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ABSTRACT

Title : 7 THE WAVELET TRANSFORM ANALYSES OF
FLOW-INDUCED VIBRATION PHENOMENON ”

prepared by : Muhammed S. Abu-Samak

suprvised by : Dr. M Nader Hamdan :

Flow-induced vibration of a single cylinder subjected to a uniform
cross flow is-investigated experimentally using both traditional meth-
ods and the newly techniques of wavelet transforms. The results of us-
ing wavelet transforms are compared with those obtained by classical
methods, such as, autocorrelation functions, autocovarience functions,
crosscorrelation functions, crosscovarience functions, and power spectral
density. Several types of wavelets were used in the analysis of the non-
stationary signals of flow-induced vibration process.

It is found that the modulated Gaussian wavelet was the most suitable
one, in terms of computational effort and efficient representation, for the
analyze of the flow-induced vibration signals. The results obtained show

that the wavelet transform reveals many important information regarding
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xix
the transient boundaries and chaotic behaviour which are not revealed
in other techniques. Also a computational saving was obtained by using
fast convolution techniques, such as fast Fourier transform, in a suitable

manner.

Recommendations are also given for future work concerning the usage
of wavelet transforms in studying some relevant topics, especially, turbu-
lent flow, vortex-shedding plhienomena, where results of these studies can

be used in the analysis of the flow-induced vibration process.
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Chapter 1

TRODUCTION

1.1 Infroduction

The widespread use of computers in the past decades and the cor-
responding ability to perform high-speed calculation on incoming data
samples in real time Have produced a virtual revolution in the field of
signal processing. This use of the high-speed computers made the field of
signal processing invades many divers disciplines ; Mechanical engineers
are one of those concerned with signal-processing techniques.

One common'teclmi(.lue of processing the time-varying signals is to
transform it into its equivalent form in the frequency domain. This cor-
responds to finding its Fourier transform representation which has been
widely used for data-reduction purposes; in many cases the frequency
domain version of the signal is easier to interpret and characterize. This
representation can explain the modifications made in signals as they
progress through linear systems. Moreover, random signals, in partic-
ular, are more suitably characterized by the frequency domain approach
which is called the spectral analysis of random signals and has found a
widespread applications in many areas of science, engineering economie,

social science, etc. The following is a brief outline of the various methods
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used to analysis random signals,
1.2 Spectral Analysis

Spectral Analysis of functions is used for studying the time-series in

another plan frowm another point of view. It is obtuined from an invertible
transformation from time domain deseription of a Tunction, x(t), to a
frequency domain description, X{w), or more generally for a joint time
and frequency-domain description(see appendix - A).

Spectral analysis applics to both continuous time functions, called

wavelorms, and discrete time functions, called sampled - data.[1] The

nmuain purpose of spectral unalysis is {o represent a function by a sum

of weighted sinusoidal functions called spectral components; that is, to

analyze or Lo decompose u function into these spectral components, The

weighting function in Lhis decomposition is a density of spectral compo-

nents. This spectral density or simply the spectrum can be efliciently
convenient, and often reveals the description of the function.

The spectral representation of a signal in a noisy medium may result

in attenuation of the noise in that medium while leaving the signal intact.

This spectral liliering is an example of the advantage of using the spectral

representation. In many cases one can also use the spectral representation

of a time signal in such & way as to code ity i.¢, to compress the amount

of data used to represent information extent of the signal for the purpose

of cflicicnt storage or transmissjon,
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1.3 The Importance of Spectral Density

‘There are three principal reasons for using the spectral uua]ysi?:;, namely,
to provide useful deseriptive statistics, us a diagnostic tool to indicate
which further analyses might he relevant, and to check ]mstu!ntc(l the-
orclical models. Ilowever, the sﬁcccss experienced with this .tcclmique
scems Lo vary will Lhe lenglh of series nvailable to analysis,

In the case of random signals there are some advantages for the use

of spectral analysis which can be summarized as follows 5

1. Signal spectra are often much sitnpler representation of the original

Lime signal.

2. 1t plays a siplifying role in explaining the ellects of linear process-

ing or filtering the random signals.

3. The represenlation of rundom signals in terms of sinusoidal-waves

which is inherent in spectral analysis is often physically satislac-

tory.[2]

A randow signal is considered to be a member of an enseible of dis-
crele - lime signals which are characterized by a set of probability density
functions , i.e, for a specific signal of a particular time, the mnplitude of
the signal samples at that time is assumed to have been determined by
an underlying sclieme of probabilities.

Random signals may be classilied junto stationary signals and nonsta-

tionary ones. In this work, more emphasize will be placed on the nonsta-

tionary type whish is more representative of the How-induced vibration
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signals.
The key to the mathematical representation of random sipnals, in

general, lies in their description in lerms of averages. Random signals

are not absolutely summable or square summable and consequently do

not directly hnve Fourier transforms which make the spectral analysis
more diflicult. However, in the case of stationary random signals, one can
use the power spectral density of the autocorrelation or autocovariance
functions where many (but not all) of the properties of the analyzed
signals can be summarized and the Fourier transform of these functions
often exists.[3]

On the other hand, the nonstationary signals depends on the refer-
cuce time chosen. Chus the autocorrelation function and power-spectral
density will be poor tools in the analyses of these signals.Furthermore,
the distribution of energy over the frequency canunot be attained by the
use of spectral analysis [1].

To vvercote e problems associnted with the spectral representation

of random signals,other techniques have been developed and will be the

subjeet of the next scction.
1.4  Other Signal Processing Techniques

‘Lhe need to represent a signal in both the time and the freqquency dontain
lias resulted in an enormous increase in the volume of resenrch in the ficld

of "time - frequency representations” (TFIY). Some examples are given

below.
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1.4.1  Short Time Fourier Transform ( STET )

One of the most important signal representation is the short time Fourier
transform (STFT) or the windowed Fourier transform which is obtained

by suitably pre-windowing the analyzed signal. Mathematically it is ex-

141034

SIFI(L, f) = f 2(t')g* (¢ — t)e 7Y g (1.1)
t

pressed as follows:

Thus, the STFT at time t is the Fourier Transform ( F'T Jof the signal,z(t’),
multiplied by a shifted window defined by g*(f' — ¢t) centered around t
where the * stands for the conjugate function, Windowing the signal
leads to a tradeofl in tine resolulion versus frequency resolution. Good

titne resolution requires short duration windows, whercas good frequency

resolution requires long duration windews. The window has a negligible

energy oulside the interval centered around i, Fhe desired time and

frequency resolution dictates the exact size of this interval [5]. The mul-
tiplication by relatively short window cffectively suppresses the signal

outside a neighborhood around the analysis time point t' =t . The STFT
is simply a local spectral” of the signal x(t) around the analysis time

t. It is evidently a linear Time-Frequency representation ( TFR ) (see
Appendix B) , complex valued, in general , and it is significantly influ-

enced by the choice of the analysis window, g(t). In the case of a fast

changeable signal it is dillicult to choose a suitable shorb-time window

and this restrict the use of STFT.[5]
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some signal contponents then the TFR of x(t) is the same linear com-
Lination of the 'TFRs of ench of Lthe signal components. This is given
by

z(t) = crz1(t) + caza(t) (1.5)

TFRAL,[) = aTFRa(L, f) + T F Ryt f) (1.6)

For a complete view of the TFILS one must mention that ulthough the

linearity of a TFR is a desirable property, the quadratic structure of a

TIFR is an intuitively reasonable assumption when we want to interpret
a TFIRR as a time-frequency energy distribution or instantenuous power
spectrum [1]. In Appendix C, there is a list of soine important TFRS.
Finally, the wavelet translorms are considered to be a powerful tool in an-

alyzing the nonstationary signals ns they can overcome the disndvantages

of the other representations which have already been highlighted.
1.5 Layout of the Thesis

The thesis is divided into six chapters, of which this introduction is the
first. Chapter 2 vutlines the flow - induced vibration phenomenon to-
gether with the previous works that might be related to the present
investigation,

A formal snd indepth discussion of the mathematical principles of
wavelet translorms and comparisons with other processing methods are
the subject of Chapter 3. Chapter 4 describes the experimental set up
used to provide the data used for the wavelet transform analysis. Chapter

5 presents and discusses the experimental results togethier with their

analysis using different technicques.
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Finally, Chopter 0 reports the concluding remuorks gained from the

present invesligntion, together with the recommendations for [urther

work,
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Chapter 2

FLOW - INDUCED
VIBRATION PHENOMENON

2.1 Introduction

The viscous flow past a two-dimensional bluff body and the resulting
recirculation region behind the bluff body have been the subject of nu-
merous investigations [7-11]. These studies have been motivated by the
. desire to understand the fundamental physics of such flows, vortex street

formation and near-wake flow.

The theory of vortex shedding is very complex, and exact solution
to the fluid-elastic problemn has not, yet, been found. More recently a
number of promised studies which examined oscillating flow problems
have begun to relate the motion of the vortices to the forces acting on
the cylinder. In addition, the vortex motions are explained in terms of
the relevant dimensionless parameters.

Furthermore, recent experiments {7, 8 Jensure that a bluff body in a
pertutbed incident flow consisting of a mean flow with a periodie compo-
nent superimposed upon it is identical, under suitable conditions, to the

vortex resonance of a cylinder oscillating in line with an incident uniform

flow,
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In general, large-amplitude vibrations duc to vorticity shcdding are

observed when the flow reaches a criticul value. These vibrations have a
destructive effect on bridges, cables, and other structures, which muke the
study of the flow induced vibration of o practical importance especially
with the modern industry applications of these systems. In this Chapter,
some of the investigations that have been reported are summarized so
as Lo give account of recent contributions to the liternture on the flow-

induced vibrations and related aspects.

2.2 The Flow-Induced Vibration Phenomenon

2.2.1 General Description of The flow-induced vibration
Phenomenon

If a cylinder is set normal to a uniform flow direction, the fluid-structure
dynamic interaction will induce a lateral oscillation of the cylinder. 'This
sell-excited molion is caused by the luctualing fluid pressure forces on
the cylinder surfnce which are generated by vortices shed alternately from
cach side of the cylinder. The knowledge of the behavior of the forces
resulting from this interaction is essentianl for the adequate design of this
problem.

It has been observed that when one of the natural [requencies of the
immersed body is near the vortex-shedding frequency and the damping
of the system is low, sell excited vibrations of the body can be induced.
These resonant oscillations are accompanied by a "lock-on” or capture of
the vortex-shedding [requency by the vibration [requency. The vortex-

shedding frequency, [, ,is expressed as u non-dimensional Strouhal number,
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S, where § = I'U-'i, here U is Lthe free sbream velocity and, d is the diameter
of the body [9]. Furthermore, the luid-dynamic forces (Lthe periodic lift
and the drag forces) on the body can be amplified through a nenlinear
interactive process resulting in an increase in the vibration of the body
with changes in the flow ficld in the near wake of the body [10].

The "lock-on” or synchronization cflect between the vortex and vibra-
tion frequencies will cause a deviation between the theoretical frequency,
obtained from the Strouhal, and the experimental vortex-shedding fre-
quency, which is equal to the cylinder natural frequency, when the ampli-
tude of cylinder oscillation passes a critical threshold. Also, the "lock-on”
cllect is observed when a cylinder is forced to oscillate sinusvidally in a
uniforn streant. One could conclude from this that the body-wake system
behaves as a nonlinear, sell-excited oscillator.

Blevins [8] put a general classilication of the How-induced vibrations
based on the nature of the flow and the charncteristics of the structure as
shown in Fig. (2.1) . Blevins [8] was one of those who tried to develop an
approximate theoretical model for the fluid-structure interaction problem
with some success.

The main An essential reason for the difliculty of developing a success-
ful ;odel is due to the relntively Inrge number of parnmeters alfecting the
amplitude of the vibrating body. These parameters include;the reduced

velocity,mass Ratio,Reynolds muuber and the damping factor.
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2.3 Torms of I'low Induced Vibration

There nre three forms of flow-induced vibralion; vortex shedding,fluid

clastic or galloping and flutter. Following is a briel of description of each

ol these [orins.

2.3.1  Vortex shedding

Vortex shedding has been the most common form of fluid dynamic ex-
citation for a single cylinder Blevins [9) described the mechanism of
separation and vortex shedding e claimed that when the fluid flows
toward the leading edge of a blufl body the fluid pressure rises from the
free slream pressure Lo the stagnation pressure. This will develop bound-

ary layers on both sides of the cylinder. These boundary layers separate

from ench side of the cylinder surface near the widest section and form

two free slienr Inyers which bound the wake. Since the innermost portion
of the free shear layers moves much slowly thau the oulermost portion
of the layers which are in contact with the free stream,the free shiear
layers tends to roll up into descent, swirling vortices. This mechanism is
shown in Pig(2.2). 'Lhe shedding of the formed vortices alter the pres-
sire distribution, and the cylinder experiences a time-varying force at
the [requency of vortex shedding.

Lock-on phienomenon is an important feature of vortex-shedding ex-
citation. I the frequency of the vorlex-shedding is in resonance with
the natural frequency of the member that produces it, large amplitude
oscillations with consequent large stresses can develop.

These oscillations begin when the velocity increases or decreases so
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llmt the Sllc(l(“llg rl‘cqllcucy approaches the natural frequency of the
structure. Lock-on occurs over a certain range of velocities depending
on the struclural and flow properties. This is the dillerence between the
lock-on and the usual case of resonance which exhibits a single resonance
point.

As the lock-on phienomenon begins and the motion of the vortex shed-
ding locks into the structural frequency, a feed path is completed so that
the motion of the structure controls the vortex shedding. Lock-on phe-
nomenon disappears beyond a critical conditivn due to the limited capac-

ity of the oscillaling structure to alter the frequency of vortex shedding.
2.3.2 TIluid-Elastic Excitation (Galloping)

Flie flow-induced vibration of blufl structure is commonly referred to as

stall flutter or galloping. Galloping can arise in any lightweight, flexi-

ble,structure exposed to a llow. A wide variety of cross scctions, includ-
ing square, reclangular, right angle, and stalled aerofoil are potentiaily
unstable owing to acrodynamic gnlloping.

The main assumption of galloping analysis is that the fluid force on
the structure is determined solely by the instanteunous relative velocity
and the angle of attack of the flow to the structure. This implies that the

information about the uid foree can be mensured by wind tunnel test
on stationary model held at various angles

The most fascinating feature of the interference palloping is that both
the mean position of the motion and the body’s vscillation frequency may

vary appreciably with increasing llow velocily, Another notable feature is
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that the vibration amplitude always approach asymptotically a constant
value. The instability is cither in the form of the a vortex-resonance or a

galloping. The cylinder never exhibits a combined vortex-resonance and

a galloping or a vortex-resonance followed by a galloping [11].

Galloping vibration can be prevented by incressing the internal damp-
ing of the structure, reducing the flow velocity, stiffening the structure
and increasing the mass of the structure without lowering its natural

frequency or damping.
2.3.3 T'lutter

Flutter hos been defined as the dynanmic instability of an elastic body in

an airstream and is produced by acrodynamic force which result from

the deflection of the elustic body from its undeformed state [12].

Flutter can oceur in any engincering application of more than two de- ' !

grees of freedom,such as long-span suspension bridges and turbine blades.
The main reason of flutter is due to coupling interaction of bending and
torsion modcs.

The aerodynamic forces of aircraft flutter are, often, sufliciently Iarge,
to produce large shifts of the natural frequency,while in galloping vibra-
tion they are usually small to produce significant shifts of the natural fre-

quencies. Also,nerodynnmic flutber is produced by more than one mode,

Lbut galloping vibrations allects a single mode.
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2.4 Literature Survey

The fluid flow and the structure are interactive systems, and their in-
lernction is dynamic [9]. The understanding of the nature u{ this in-
terauction and forces development are necessnry steps to get a ;Bumcicnt
picture about the system. Fluid forces cause the structure to deforin, and
thus the structure orientation to the flow may change in the direction of
the fluid forces. This change will produce a new pressure distribution
around the cylinder as well as affecting the body stiffness and its natu-
ral frequency. A summary of some important studies will be presented
below.

Griflin and Hall [13-16] reported the results of recent experiments
about the vortex shedding and the flow control in bluff body wokes .They
claimed that both symetric and asymmetric vortex patterns were ob-
served over a wide range of oscillation conditions. TFor the in-line os-
cillations, vertex lock-on was observed at f= 2 , 3 ,and 4 f,, with an
asymmetric street formed at twice the basic Strouhal frequency and a
symmetric street formed at three times the Strouhal frequency, The
asymmetric pattern was complex in that one row consisted of a line of
single vortices, whereas the other row consisted of a line of oppositely
rotating vortex pairs. The vortex lock-on at tl:rcé times the Strouhal
frequency resulted in the formation of a symmetric street of vortices. In
these cases the basie patterns persist downstream over a large number
of oscillation cycles. When the oscillation [requency is four times the

Strouhal frequency, a syminetric patten is formed but rapidly loses its
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coherence in the early wake.
After an initial period of time corresponding to the quasi-steady stoge
in the forced perturbed flow culculntion, the resulting streamwise veloe-

ity history at a point in the near wake is periodic. The corresponding

power speclrum in Fig.(2.3) conluins pritnary penks at f= 1.1 and 2.2
[n 8s expecled, and sccondary peaks ol superharmonics of these values,
No additional peaks appear in the spectrum, where the power spectrum
gives evideuce of lock-on in the fully developed flow. A more extensive
discussion of the spectral element computations of the perturbed flow
cylinder lock-on is given by Hall and Griflin [14].

Filler et. al.,[7], investigated the response of the shear layers sepa-
rating from circular cylinder to small amplitude rotational oscillations.
A plot of the velocity (0’/U) in the wake form as a function of the os-
cillation Strouhal number S, is shown in Fig.(2.4). Here the oscillation
parameter §1; = wlﬁtiif where w; is the frequency of the rotational os-
cillations, At the lower frequencies near the usual Karmman shedding
frequency, a large resonaut peak is seen when the oscillation is in that
range. However, at the higher imposed frequencies there is a secondary
broad peak in the range of the shear lnyer instability frequencies. In the
Karmman frequency range of vortex shedding the wake behaves like a
noniinear oscillator near resonance. This behavior is well known {17-20]
and lLas been explored by numervus investigators for the cases of cross-
flow and in-line oscillations. An important finding by Tokumaru and
Dimotakis [8] is that active control of the near-wake vortex formation

and flow physics by rotational oscillations of the cylinder can reduce the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



17

drag on the ¢ylinder by as mush as a fuctor of six .This increase in Cp is
accompanicd by a comparable decrense in the wake displacement thick-
uess 8, ( by a Inctor of five) as defined by an integral of the cross-stream

wake velocity distribution over the height of the channel.

The introduction of the absolute/convective theory of fluid dynamic
stability has led to a promising new approach and a new theoretical frame-
work for understanding the physics of vortex formalion and near-wake
flow development.[21-27].

RRecent stability calculations based upon computed and measured mean
velocities in the wakes of stationary circular cylinders suggest that the
vortex formation region is absolutely unstable while the fully-formmed
vortex strect is conveclivelly unstable. The vortex formation region is

thought to be a complex global region that is characterized by the in-

teraction between the model and the flow upstream and downstream

propagating vorticily waves, [28-30].

Karniadakis and Triantafyllou [21] conducted a linear stability analysis
of the time-averaged flow in the near-wake which was derived from their
direct numerical simulation of the cylinder wake at Re=100. Further
research based upon these new analytical and computational approaches

described lherein is likely to lead to a new and wore complete fundamen-
tal understanding of the ncar-wake vortex dynamics and vortex lock-on
which until now have been studied mostly by using the more traditional
modeling approaches combined with experiments. These investigations
suggest that modification and control of the basic instability or forma-

tion mechanisms of the wake by imposed oscillations, i.e., cross-flow , in
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line and ro‘tatimml, incident flow perturbations, and an imposed sound
field provide a means for making substantial alterations to the near-wake
vortex pattern, and possibly to the middle-and far-wake flow patterns
us well which exist relatively far downstream from the wake-generating
body.

Anagnostopoulos el. al. [10} conducted an experimental investiga-
tion at low Reynolds numbers to study the response characteristics of
a vortex-excited oscillations of a circular cylinder mounted elastically in
a water channel and record the time histories of the cylinder oscillation
Figs. (2.5a) and (2.5b). The claimed that the maximum oscillation ampli-
tude occm;s near the lower limit of the ”lock-on” region unlike the results
of [15,20,31}], where the maximum amplitude observed was near the mid-
dle of the "lock-on” region. These study focus on the Reyneld number
between {00-150), where the vortex-strect wake behind the cylinder is
fully laminar.

Moreover, Shirakashi et.nl.[32] observed an unexpected subharmonic-
like resonance nt'ﬁ- = J in addition to the normal one at £‘I- = 1, where f,
is the Karman vortex shedding frequency and J, is the nntural frequency

for the cylinder oscillation. They explained the presence of these peaks by
the fact that the oscillating behavior of an elastically supported cylinder
whose natural frequency f,5 for the rotation-mode oscillation is several
times higher than that for the translation mode f,, us follow when the free
flow velocity U is low, a translation-mode oscillation occurs at a frequency

f = fure With inereasing U, its amplitude attains a maximumn peak when

the vortex shedding frequency f, is equal to f,,. Further increase in U
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results in a second maximum amplitude which occurs when the ratio -jf'-
ns

is around three, with the motion remaining purely translational. As U

becomes even higher, a rotation-mode dominates the flow process which

gives a third maximum amplitude peak in the displacement at the end of

the cylinder when :;.['— is around three,

nx

It is worth noting lere that in the case of a cylinder without end
plates an additional peak was found in the spectrum S, at a frequency
nearly one-third of the usual Karmman vortex-shedding frequency, when
the probe was located on the wall of the test cylinder at a point near
to the side wall [32]. The effects of open slots on the vortex-shedding
were also observed for a fixed cylinder as shown in Fig. (2.6)(b), which
confirmed thut the additional peak of 5, at [ = '3& was not induced by
the cylinder ovscillation. When the blocking plates were attached to the
cylinder, all foregoing clfects of the slots were completely erased as shown
in Fig. (2.6) (a) ,both for fixed cylinders and oscillating cylinders.

The eflects of the blocking plates on the oscillating behavior of a cylin-
der are clearly revealed from Figs. (2.7) and (2.8) [32]. In Fig. (2.7) the
translation-mode oscillation of a eylinder without blocking plates Las two
resonant mnplitude peaks at :f{'; =1 and f{f: = J, and the lntter of these
two peaks is considered to be caused by the Additional penk of Su atf = fsi
near the side walls. By atlaching the Llocking plates, the higher velocity
peaks in Fig. (2.7) were completely removed and the lower velocity peaks
became more sharps as seen in Fig. (2.8).

Later on, Shirakashi et. al. [33] investigated the Kuarmmaen vortex

excitation of an clastically supported cylinder in cross-flow for circular
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cylinder and their results can be summarized as follows:

1. The spectrum peak [requency in Figure (2.0)(a) gives n Strouhal
number § = -lf"l—)- around 0.2 and the oscillation is significant only
when f, = f,., . Ilence, the penk of the veloeity spectrum for a sin-
gle cylinder corresponds to Karmuman vurtcx;sheddiug. In contrast,
in Figure (2-0)(b), the peak due to Karmman vortex-shedding van-
islies and two peaks appear in the spectra at lower frequencies. The
higher frequency for the blunt peak is just twice the lower frequency
for the higher sharp peak. In Figure (2-9)(b), this lower frequency
is denoted by f, to distinguish it from that by Karmman vortex-
shedding. As clearly scen in Figure (2.9)(b), the upstream cylinder
in this case nlways oscillates at its natural frequency f,, and the max-
imum amplitude of this new cxcitation is attained when I = Jops
The displacement at the maximum excitntion are almost sinusoidal,
with a slight moedulation; i.c. the spectra of the displacements are
concentrated at a frequency f = f,,. Since fn: is the natural fre-
quency determined from free damped oscillation in still air, it is

inferred that the efleclive mass is equal to the mass in still air and

the damping factor is as small as in the free damped oscillation.

2. When a hot-wire probe is moved along the upstrenm eylinder, the
velocity spectrum changes as shown in Fig (2.10). The transition
point at ﬂ = 2.25 represents the spunwise position beyond which

the peak corresponding to longitudinal vortex-shedding disappears

from the spectrum. The sharp peak which appears in the region ofﬁ
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Eckerle [35] presents some concluded remarks in his study on the ef-

fects of velocity on the three-dimensional separated flow region in front

of a cylinder. Ile found that the separation in front of cylinder depends

on the momentinn and is related to Lthe approaching free strenm velocity
and boundary-layer thickness. At relatively low incoming free stream ve-
locities, the reverse tlow did roll up into vortex in the plane of symmetry.

Ota et.nl.{30] investigated the dynamic response of an elliptic cylinder,
Typical examples of their results of the power spectral density of the
velocity fluctuation for an angle of incidence, a,= 15 deg and at the
subcritical Reynolds number, Re=35,800, are shown in figures 2.13 which
shows a high peak at the vortex-shedding frequency . However, in the
critical Reynolds number region, Re=80,100, two spectra were observed
at diflerent times. Oue of them shows a nurrow peak at 220 Iz as found
in Fig. (2.13)(L) and another shows n weak vortex-shedding at 530 Hz
in Fig. (2.13)(c). The How around the cylinder is observed to fluctuate
intermittently with time from the former to the latter. That is, the
flow is very unstable and exhibts the suberitical one at one moment but
changes into the critical one at other time. Such a fluctuntion of the flow
may be originated from the formation of the separation bubble and its
burst. At Re=101,400 beyond the critical Reyuold number, Re=80,100,
the flow around the cylinder becomes relatively stable, though the peak
frequency of the speclrum fluctuates from 760 Iz to 800 Hz, and the

power spectral density extends in a very wide range of frequency, ns

shown in Fig. (2.13)(d).
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More recently Marn et. al. [37] have used a good technique to study
the eruss flow induced vibration. In his work a vorticity formulation of
the iustability problem has been used to establish the onset of fluid elastic
instability. Perturbation equation were developed and solved numerically
. The ftuid forces were obtnined by integrutixgg the pressure along the

surfnce of the cylinder motion to predict the threshold of the dynatnic

instability. Criteria for the occurrence of instability were explained and
a simple optimization and parametric study was itnplemented by varying

the disturbance patterns, the Reynold number, the geometry, and the

pitch to dinmeter rativs.

Obasaju el. al. [38] conducted an experimental study of rectangular

and cut-out square cylinders. Fig. (2.14) shows eight samples traces of

the displacement of the vibration cylinders of approximately 2 minutes

cach. For the cut-out square, the recording was made at TVUTJ = J3.55

(ARMS/d = 0.0176) where the peak of the response of the cylinder
occurred. Trace (a) shows that the vibration amplitude remained at one
level for a long time before drifting to another level. The drift may have

been caused by a minute change in the tunnel wind speed.
Traces (b) to (f) shown in figure 2.14 charncterize the displacement

of the rectangular cylinders wlen, height to diameter ratio{ 1I/D) = 4

» 5 and 50 and the angle of incidence, a, is in the range J0 < a < 70,

Traces (b) to (d) in Fig 2.14 show that when % = -;-, where S is the

Stroultal number, the vibration amplitude was irregular and there were

periods when there was little or no vibration. Near I-VUB = §]§, there

 was a burst-type response with rather long intervals between burst, see

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



21

trace (¢) in Fig.(2.14). When WUD was significantly higher than % the
amplitude was irregular and has a low frequency modulation, see trace
(f). Traces (g) and (h) in Fig.(2.14) characterize the displacemnent of the

rectangular cylinder when hight to diameter ratio H/D = 4 and 5 and

the angle of incidence is in the range 10 < ¢ < 30. When 7\'% g -é—. , the
vibration amplitude was fairly regular, see trace (g). Tuking TVQD' slightly
away % gave the "beating” type of vibration shown in trace (h).
Morecover, Nuzzi et al [39] studied the three dimensional vortex for-
mation from an escillating non-uniform cylinder. Fromn their contribution
the period-doubled response of the wake is presented by the lower veloc-
ity trace in Lhe middle column of ligure (2.15). The upper trace indicates
that the vortex formation in that portion of the wake is still highly pe-
riodic with insignificant modulation, and thereby locked-on. The drastic
dillerences between these traces in the middle column of figure (2.15) em-
phasizes the fact that the period-doubled wake instability from the three-
dimensional portion of the c¢ylinder is indeed a localized phenomenon.
Also spectra of the near-wake velocity fluctuations characteristic of
the lock-in state are illustrated in figure (2.16). The predominant peak
of the near-wake instability, i.c. the vortex formation, occurs at the same
frequency for the midplane b, which corresponds to midplane of three-
dimensional portion of a cylinder having gradual spanwise portion in
diameter, and oll-midplane a, which represents location within region of
two-dimensional vortex formation from cylinder, locations, emphasizing

the occurrence of the global luck-in along the entire span of the cylinder.

The spectrum at the top of the left-hand column of figure 2.16 shows
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the case of lock-on response of the wake at the off-midplane allocation.

Correspondingly, at the midplane b location, there appears to be the
period-doubled component 5}‘; and the high components at fy , f0+1/2fg
y and so on.

Increased irrcgu[ul:il;y of the spectruin st the midplane b location is
evident in the bottom spectrum in the riglt-hand column of figure 2.16,
corresponding to the regime of complex modulation fescinuted in figure
2.16. 1t is characterized by a number of discrete, nonlinearity interacted
spectral components. Correspondingly, at the off-plane a location ,there
cxist the lundamental frequency f;, subhiarmonic frequency 'g‘"- and higher-
order components due Lo the noulinear interaction.

Finally ,Baker et. al. [40] present some comments about the tran-
sition process as a whole within horseshoe vortices. They show that it
would scem quile possible lo discuss horseshoe vortices processes using
the language of nonlinear dynamics i.e., chaos theory. They found that
as the Reynolds number inercases the number of horseshoe vortices in-
creases from 2 to 4 to 6. Two distinct sorts of oscillation then occur
(examples of period doubling), before a final breakdown to turbulence
(or chnos). 10 the above specenlations are correct then it is also possible
that a similar process occurs in turbulent vortex systems at even higher
Reynold numbers. Such a description is an atiractive one, but in essence
is no more than an analegy. 1If the "route to chaos” offered by horseshoe
vortex systems is to be fully described, a great deal more experimental
work is required to describe the process fully, If this is done, however, it

perhaps offers a way in which an "engincering scale” transition problem
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can be mmlyzed by using the powerful techniques of nounlinear dynamics.

In most of the aforementioned investigations the authors presented
measurcinent of the IMS accceleration of the structures vibration versus
free stream velocity, for the time signal analysis, while for the frequency
analysis they presented the power spectral density assuming the process
lo be stationary.

Int the present work a more general approach to signal analysis, mainly
y the wavelet transform will be adopted. Based on knowledge gained so
far in other similar applications it is hoped that the wavelet transform
can reveal several aspects of the How-induced vibration process which are

diflicult to show using the clussical methods of signal processing.
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Chapter 3

THE WAVELET TRANSFORMS

3.1 Introduction:

Wavelets are rapidly finding applications as tools for the analysis of non-
stationary signals. The main objective of this Chapter is to explain what
is meant by the terms .”wavelets” and "the wavelet transforms”and the
relationship between the two terms. In section 3.2, classification of the

signals, often encountered in practice, will first be introduced . then the

most well known traditional methods of signal processing, such as corre-

lation functions and power spectrum density are hopefully discussed in
the rest of section 3.2. Section 3.3 presents the wavelet transforms where
their main characteristics are also discussed. Finally the literature re-
view conducted, concerning the wavelet transforms, (WT), in this study
will be presented in section 3.4, together with the application of WT to

different engineering problems

3.2 Classification of Signals:

Signal processing is concerned with two broad classes of waveforms: de-

b

terministic and random (Stochastic) signals. The deterministic waveform

is one which can be completely specified as a function of time while a ran-
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dom wavelform cannot be completely specilied as a function of time so it

is modeled by means of its statistical propertics.

A random process is an indexed family of random variables Aj. The

family of random variables is clm;l*uclcrized by a set of probability dis-
Lribution fitnctions thot in general may be a function of the index j. In
using the concept of random process ns a model for discrete-titme signals,
the index j is nssocialed with the time index (1]

A rondom signnl is stationary if its properties are statistically invariant
over time. A well-known stationary signal is the white noise, which,
in its sampled form, appears as a scrics of independent drawings. A
stulionary signal can exhibit unexpected events, such as, pulses, but we
know in advance the probabilities of these events, i.e, they are statistically
predicatable known.

The ideal tool for studying stationary signals is the Fourier transform.
In other words, stationary signals decompose canonically into linear com-
binations of waves (sines and cosine). In the same way, signals that are
not stationary decomposes into linear combinations of wavelets [41].

The study of nonstationary signals, where transient events tay ap-
pear cannol be predicted even statistically with knowledge of the post,
and this necessitates technigques that are dilferent from Tourier trans-
form. These techniques, in addilion to thuse discussed in Chapter one,
include wavelets of the time-frequency type most suitable to the analysis

of quasi-stationary signals, and time-scale wavelets which are adapted to

* .
nonstationary signals.

In the following , the classical techniques, such as , spectral analy-
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of the fact that the calculation of the coeflicients of DFT can be carried
out iteratively, which results in a considerable saving of computation

lime. Specilically, il the time series consist of N=2" samples, then about

2nN = 2N log, N arithmetic operalions are required to evaluate all N as-

sociated of the DE'T coellicients. ‘The number of operations required for
the calculation of the DFT coellicients with straightforward procedures

is (NV?) [44).

3.3 Wavelets and the Wavelet Transform (WT):

A wavelet transform, W'(n,b), is a function of two adjustable parameters

(n)and(b), where (b} is a translation in lime and () is a parameter that

governs the lrequency distribution.

By controlling these parnmeters, one obtains a signal representation

that is well Jocalized in both lime and frequency. Following are the

varivus definition of wavelels and then the wavelel transform.

3.3.1 Wavelels :

The first delinition of a wavelet due to Grossmann and Morlet [45] is as
follows: A wavelet is a function h(t) in L*(R) whose Fourier transform

H(¢) satislies the condition

o i ‘
fu I”(M)I”—;— = (3.11)

nlmost every where. L2(1?) is the space of the squared integrable functions
and ¢ is a duiumy variable.
The second delinition of a wavelet is due to the Littlewood-Paley-

Stein theory [41] where a wavelet is defined as a function h(t) in L*(R)
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whose Fourier lransform TI({) satisfies the condition

3.5

S ligrs =1 (3.12)

- Do

ulmost everywhere, If Ii(t) is o wavelet in this sense, then (log?)‘5.h(t)

satislies the Grossmann-Morlet condition.

The third delinition refers to the work of Franklin and Stromberg (41]).
A wavelet is a function (L) in L2(12) such that 2511.(2%:—!;)['01‘ eachj, k €
7 is an orthonormal basis for L*(f1). Such a wavelet h(t) necessarily
verifies the second condition.

From above it can be scen that in going from the first to the third
definition we are adding more conditions and thus narrowing the scope of
the "wavelet.” The sanie is Lrue for the wavelet analysis of o function. In
the gencral Grossmanu-Morlet theory, the wavelet analysis of a function,
sny [{L), yields a function W(n,h) of n--1 varinbles, where n > 0,h € R",

It should be shown that not every lunction can be a wavelet . Gross-

mann and Morlet [45] give the following conditions, based on group the-

ory, for a function h(t) to be a wavelet :

1. Square integrability condition:

/p,,(e)[? E | (3.13)

Hw) =0 w<y (3.14)

where (w) is the Fourier transform of h(t). These two conditions

ensute that the transformation is a bounded invertible operator in
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the appropriate space,

3. The third condition, which is called the admissibility condition”,

is

Jduwexp® [ |H (w)(exp* w|*dw < 0o

Il these conditions are satislied then the corresponding WT(a,b) is a
defined trausforin.

The WT can be considered as time-frequency representations or time-
scale ones according to the parameters (a)and(b). In the following a more
detail picture of these types with emphasize on the time-scale transforms

which are more suitable to the analysis of nonstationary signals will be

presented
3.3.2  Grossmann-Morlet T'ime-Scale Wavelets :

?Time-scale” analysis ( also called space-scale” in the image case , or
"multiresolution analysis”) involves using n vast range of scales for signal
analysis. This notion of scale, which refers to cartography, implies that
the signal (or image ) is replaced, at a given scale, by the best possible
npproxi1nati§n that can be drawn at that scale. By "traveling” from the
large scales toward the fine scales, one "zooms on” and arrive at more

and more exact representation of the given signal,

The analysis is then doune by calculating the change from one scale to
the next. These are the details that allow one, by correcting a rather
crude approximation, to move loward a betler quality representation.

This algorithmic scheme is called "multivesolution analysis” and is devel-
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oped by Mallat [47]. For more iusight on the multiresolution theory see

Appendix D.

The wavelets are defined by starting with a function of the real variable
t. This function is called n "mother wavelet” provided it is well localized
and oscillating. (By oscillating it resembles & wave, but by being localized
it is n wavelet.). "The localization condition is expressed in the usunl way
as it decreases rapidly to zero when t tends to infinity. The second
condition suggests that it vibrates like the wave [48]). This requires that
the integral of h(t) to be zero, and that the same hold true for the first

i moments of h(t). This is expressed as

[ wa = [ eae

—00 —oo

= (3.15)

The "mother wavelet”, h(t), gencrates the other wavelets of the family. -

This is done by changing the scale n, i.e y the scale of k(t) is conventionally
1, while h4)(t) has a scale of (a) , 2 > 0 and by translation in time by
(b)ji.e , (the function h(t) is conventionally centered around 0, end hap)(t)

is then centered around (b). Thus we have :

L, t-b -
h(u,b)(t) = q,"-r’ IL(T), ‘J G Il. (3.16)

Alex Grossmann and Jean Morlet [46] have shown that, if h(t) is real-
valued, this family of wavelets can be used as if it were au orthonormal
basis. 'Lhis means that any signal of finite energy can be represented

as a linear cowbination of wavelets set and that the coeflicients of this

combination are, up to a normalizing factor, measure , in a certain sense,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



37

the fluctuations of the signal , x(t), around the point (b) , at the scale

given by (a) > 0.

Thus, by selecting an approprinte "mother wavelet”, h(t}, apd gener-
i
ating n set ol wavelets, hap(t), one is uble to represent a dynamic signal in

another mixed plane of the shifted Lime and the corresponding jrequency
content at a scale a, in which the analysis can see more than one view of
this signal. By changing the scale (n) one moves to a more detailed pic-

ture of the frequency content of the original sigual [47]. For example, at a
coarse scale of (v) one can look at the global scene of the analysed signal
and at more finer (1)’ one move to another detailed frequency analy-
sis of the sigual. These characteristics manke the time-scale transforms

appropriate for the analysis of nonstationary signals .

3.3.3  Time Frequency Wavelels :

The W' representation was originally introduced as a time-scale repre-
sentation. Althougl this representution is based on well defined abstract
mathematical concepts ,their physical meaning, however, are not casily
grasped by the practicing engineer.

This molivated signal-processing experts lo find a more physically

interpreting version of W' transform which led to the development of
Malvar wavelels in LOBT, [0 ,udd wavelets packels in 1990 [50]). Wil
the Malvar wavelets the signal is segmented adaptively and optimally,
and ther the segments are analysed using classical Fourier unulysis, The
wavelets packets reverse his order, i.e, lirst the signal is filtered and then

analyzed in the time variable. These two techniques were described by
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ville in 1947 [41]. Ile wrote,"we ean cither,first cut the signal into slices
(in time) with a switeh; then pass these different slices through a sys-

tem of lilters to analyze them. Or we can, first filter different t;requency

bands ; then cut these bands inty slices (in time) to study the%ir energy
variations”. The first approach lQ;ldS to Malvar wavelets and t!le second
to the wavelets packels. I'he timc;['rcquency wavelels, however, are more
suitable to study the quasi-stationary signals and there are many restric-

tions that complicate their direct application, for example, the Malvar

structure which is a family of orthonorinal bases wepy are defined as @

'llk‘[(ﬂ) =
2w(t — 2171')(:05(&;-) leoz k= 1,2,3,..
w(l — 2lr) ledz k=0

2wt~ An)sin(®) Le 27 k=123

§hy Shyred

(3.17)

where w(t) is n varinble length window hinving the property that both

w(t) and its Fourier transform decay exponentially and obey the following

restrictions:

w(t) =0 il t< -7 or t2>3n
w(t) = w(2m - 1y if U< w(t) =1
w(t) - w(--t) =1 il -n<t<nr (3.18)

In addition, the above constructions may suffer from some irregularity
[49], and other conditions as , for example, those imposed by Meyer and

Coifinan [41,51]). The problem gets even more complex, when we consider
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the applicalion of wavelet packets [50].
Based on the above discussion, in this work, the time-scale wavelets
and the time-scale transforms will be adopted for the analysis of the flow-

induced vibration siguals. In making this choice the following factors were

laken into consideration :

1. The time-seale wavelets are more suitable for the analysis ol non-

stationary processes, such as, the flow-induced vibration process.

2. They are easier to formulate mathematically aud to be computed

efliciently.
3.3.4 The Wavelel 'Iransforms :
The wavelet transforins (W'I') was first given by Morlet and Grossmann
[46] for the analysis of seismic dala and it is defined as

t-1b
a

W(a,6) = —zz [ a(eph(==" )i (3.19)

where the wavelet function h(t) is an appropriate window like the
modulated Gaussian . The WT is the convolution of a signal x(t) with
an analysis window l(t) shifted in time by (b) and diiuted by a scale
purameter (a) . The seale parnmeter (2) ean by chosen such that it is
inversely proportional to frequency. The factor Ial"’f5 is used to ensure
energy preservation [52] and there nre various ways of discretizing time-
scale purameclers, (a)and(b), ench one yields a different type of wavelet
transform. The purpose of W' is to extract the localized conditions of

the signal labeled by these scale parameters (a)and(h) and then the signal

can be computed by expanding it into a family of functions , i.e., into
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a set of l‘rcqneucy channels of cqllul bandwidth on a lognritlmﬁc scale

At this point in time , the clear and complete picture of what wavelets

have added Lo our understanding of the multiresolution technicque, is far
from being fully understood. IHuwever there is some promising advan-

tages of W' like:-

L. The isolation of events in lime (or space) and [requency.

2. Since one can choose the scale parameter such that it is inversely
proportional to frequency, the WI' provides high spectral resolution
and poor temporal resolution for low frequency. Conversely, for high

frequency it provides high temiporal resolution, enabling the WT to

"zoom on 7 the singularities [54,55].

The significance of W' is probably best grasped by comparing it to

the short time Fourier transform "STIE”, where

STFT(w,b) = [ 1t ~ b exp™ (1)t (3.20)

where w and b are the frequency and the centered time pf the analyzed
signal respectively.

Thus, to obtain STFT (w,b), one multiplies the signql by an appropriate
window Ii(t-b) like Gaussian centered at time b (sliding analysis windows)
and then takes the Fourier transform. The mathematical terms is an
cxpansion of the signal in terms of a family of function h(t—-b)ej“", which
are generated from a signal function hi(t) through translation (b) in time

and translation w in frequency. In contrast, the W' is an expausion of
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functions h(t—;é) generated by translation (b) in tinte and dilation (a) in
time (concentration in frequency).

The continuous W' resembles a continuous bank of STFT with a dif-
ferent window for cach frequency. The significance of this is that, while
the STFT window have Lhe same time and frequency resolution, the W
have time resolution decreases with a and frequency resolution increases
with a. This property can be of a great advantage in signal process-
ing since high frequency characteristics are generally highly localized in
tire whereas slowly varying signals require good low [requency resolution
[65). As originally proposed by Morlet ct.al. (45], I U’]z.was a modulat-cd

Gaussinn which is defined as :

1

h(t) = et exp 5 (3.21)

This function is still the protolypical analyzing wavelet for signal pro-
cessing application [56]. ‘L'he abuve wavelet only satisfies the admissi-
bility condition approximately and so cannot be an ndmissible analyzing

wavelet. However al wy 3> 0 the Gnussian will be very close to an adinis-

sible analyzing wavelet.

In Chapler Five other possibilities of analyzing wavelets will be stud-
ied. Ilere, our exclusive concern will be the discrete values for (n) and
(b). In particular, the paramecter a is chosen to be equal to 2 where i is
termed the octuve of the transform [56-59] , i.e WT'(a,bh) will be:

W2, b) = \/l- [ W= (3.22)

Moreover, b is taken to be a multiple of a, i.e, b = n.2! and this leads to:

TVT(Z'.,Z"N,) = % fh(%‘,- — nja(t)dt (3.23)
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A logical step in applying the WT to discrete signals is to discretize
the above integral, this lcads to define the discrete wavelet transforin,

DW'T, as lollows;

W i) = T/{F};h(gf ~ w)a(t) (3.24)
Each equation provides a multiresolution analysis of x(t) specifically,
the coellicients IV(2',2'n) carry information nbout x(t) near the frequency
2 and pear the time instant 2-7% and the above sum provides an approx-
imation to x(t) up to scale 2%, i. e, it provides a low pass filtered version
of x(t) with less details. This is one of the aspects which make WT de-
composition is a powerful teol in studying the scaling properties of the
signal [060-03].
In studying the flow-induced vibeation signals which are n nousta-
tionary type, the Daubichies” approach [64] is adopled. The scale and
translation parmmeters (a) and (b) where chosen such that they consti-

tute discrele lattices of wavelets. 'T'his leads to :

W) = o5 oend(p)

= ag * h{apt™ — nby) (3.25)

in this study ay and & arve chosen to be 2.0 und 1.0 respectively.

However, these functions h(t) are of very particular type. Typically
their Fourier transform /(w) has a compact support ( By. 3.10 ). More-
over, for practical purposes, it is desirable to use functions i(t), that
are very concentrated. It is quite true that the choice of this wavelet

will play an importunt role in idenlifying the propertics of the analysed

signal.,
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The problem of choosing a suitable wavelet is thoroughly discussed in
[61-63). They presented many conditions based on the optimization tech-
niques, quadrature mirror filter theory and difference equations for the
optimal choice. In the present study the well known wavelets are selected
in order to study the flow induced vibration signals. These wavelets, in
Fourier transform version, will be compared in order to choose the most
suitnble wavelet for the analysis of flow-induced vibration signals.

In what follows the mmathematical delinition of these wavelets are pre-

sented.

1. Mallat [47], used a multiresolution signal decomposition theory and

quadrature mirrer fillers to compute an orthonormal wavelet and

used il in a compuler vision applications. LThis wavelet is defined as

D (F(2) b y
i) = ( Fw )1*(,)) (8.20)

where T is a delay factor, and

Ni{w) + Na(w)

lij= 105(sin %) 827}
Ny(w) =5+ JU(cos( 1) + 30(605(2) )(sin(‘-;-f)) (3.28)
Ny(w) = (cos( ) )(sul( =N+ 70((:05(;)4) + %(Sill(%)s) (3.29)
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2. Daubichies construct a tight frame wavelet [04,05] with no restric-
tion on the choice of the parameters ag,by other than ao > 1 and by £0

0 w<l

. w={ -
H(w) = (log ao)™? | snl3v(gzyl !Sw<al

cos[%-v(i;'i:'«-iu(;':__'ﬁ] aol <w < gjl

0 W > a'él (3.30)

where

(3.31)

and :

=1 z>1 (3.32)

3. Meyer [41] used Daubichies’ wavelet and constructed another one
which reflects a deep understanding of the concept of multiscale

analysis, this wavelet is delined os :

Iy (w) = 1/;; exp™/2 (I (w) + H(-w)) (3.33)

where, I{(w)is "Daubichics’ wavelet”
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4. The Mexican hat, which is the second derivatives of the Gaussian,

and defined as [04]:

-1/4 2

H(w) = Wl exp™ 2 (3.34)

(424

. The 8th derivative of Lhe Gaussinn is [64]

Hw) = gijﬂ Y8 exp /2 (3.35)
5

¢. One cycle of the sine function is given by ;

\/._3 sin Tw

l—wz

hw) =

(3.36)

This function was constructed mathematically [64] and not used for

practical applicalions.

7. Lhe modulated Gaussian, that was used by Morlet [46] in analysing
seismic data,

T

Lt

_“?
Ww) =5 Mexp 7 —exp i exp”

uit,
o S

(3.37)

Kadambe and Boudreaux (06,67} used this wavelet with wy = 7r( 2 )]/2

These wavelet were used in the following discrete implementation of
the wavelet transformi, which were used in the analysis of the nonstation-

ary siguals obtained from the How-induced vibrution process,

WT'(m,n) = "'fcxp'""““" “h(ag'w) f (w)dw (3.28)

-z

where ', h are the Fourier representations of the analyzed sighal and the
chosen wavelet, respectively.
Figure 3.6 shows the flow chinrt that has been used in the present

investigation to compute the wavelet trausform of an appropriate signal

where the computer program is listed in Appendix L.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



46

3.4 Literature Review

As mentioned in previous seclions the wavelet transformm was developed

recently by Grossmann and Morlet [15,46], in 1984, and was done by the
decomposition of square integrable wavelets. These wavelets were then

obtained by shift and dilation from any one of them.

The shift aud dilation provide a chance to look at the siguals at differ-
ent scales and that will clarify discontinuities and transient boundaries
of these signals. These advantages make WT a very suitable tool in deal-
ing with signal processing and this was the first usage of WT ; to study
a scismic sigual[45,08]. Later on Kronaland-Martient [67] used WT to
study the sound patterns. Also Flandrin [68-70] made a remarkable con-
tribution by npplying WI' to the noustntionnry signals. At the sume time
Holschuieder [71] developed a real time algorithm for signal processing
using W'L,

More rccc:utly y Shensa [66] tried to clarify the relationship between
discrete W' (DWT) and continuous WL (CW'L') by a through treatment
of the algorithin a’ trous’ [72], whicli used a CWT, and the multireso-
lution approach {47], which used DW'L. Shensa [56] brought these two
algorithms together in u generalized one and then provided a systematic
enmework (Fig. 3.7) for DWYT and derived the conditions under which
DWT computes CW'L exactly.

Rioul and Dulunel [73] applied [ast convolution techniques to achieve
fust algorithms for DWT and CWE. Their cffort reduced the computa-

tionul complexity from L Lo log L for large filter lengths where L is the
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filter length. They compared severa! methods for implementing various
kinds of W1 efficiently. Each of these methods uses the DWT by pre-
filtering the analyscd signal (sce Fig. 3.8). Also this prefilter design is
discussed .

The WT analysis is performed using a signal prototype Tunction called
a wavelet which can be thought of as a bandpass filter. Based on iterations
of discrete lilters Daubechices (52,563] constructed compactly supported
orthonermal wavelels (sce Fig. 3.9) ,und a detniled treatment of their
solutions are presented in [04].

Vetterli in successive papers [54,55,74] discussed the relntionships of
wavelets,lilter banks and multiresolution systems, and compared the WT
with STE'L (see Fig. 3.10). Furthermore, Kovacevie and Vetterl [75] pre-
seuted new results on multidimensional filter banks and their connection
to multidimensional non separable wavelets (Fig. 3.11). Lhey showed the
difliculty of designing regular wavelets in multiple dimensions. However,
they presented some initinl results indicaling a direction for future work.

One of the important fields corresponding to W' is the comparison of
this technique with older ones such ns Gabor analysis, STF'T and Wigner
distribution (WD),

Delpratn ct.al.[76] compared the WT with Gabor analysis and they
claim that there absolutely no difference between them in procedures and
coticluded that the only diflerence lies in the behaviour of the squared
modulus of their representations,i.c, the time-frequency energy density.
In their investigation they emphasized on the precise estimation for fre-

quency and amplitude modulation Inws but not for the case of multicom-
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which may be insuflicicnt for a complete representation,
Ancther word about the measurements. Farge [86,41] indicated that
the experimentation in fluid dynamics was to a considerable extent a

sonmiewhat recondite form of computation which provide, and is still pro-

viding, the decisive mathematical ideas in the field of fluid dynarmics.
Farge believes that it is now the time to concentrate on elfecting the
transition to digital devices rather analogy type such as wind tunnels,

and that will increase the power of our approaches to an unpresented

extent.

A more detailed survey of the relevant literature may be found in

[41,47,60].
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Chapter 4

APPARATUS AND
INSTRUMENTATION

4.1 Introduction

The purpose of the experimental work in this thesis is to study the time-
history of the acceleration amplitude of the vibration of the circular cylin-

der subjected to cross flow. Following is a description of the apparatus

and the instruments used in this study are presented. Also, the measure-

ments techniques used are discussed.

It is noted that the experimental set-up and experimental procedure

used in this work has been used by other graduate stndents at the Uni-

versity of Jordan ,mechanical engineering laboratories{87,88].

4.2  Apparatus

An outline of the apparatus and coordinate system used in this study

are shown in figure (4.1). The wind tunnel was an open circuit suction

type with a nezzle having a length of 0.9m and an area reduction factor

of 1/9. 1t is covered by a screen which works as a protective system.The

maximum flow velocity was 36 m/s and the turbulent intensity of the

free stream at the working section was 0.35%.
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The test section chaunel was a straight duct made of 1 Cim thickness
perspex and has a cross section of 30 e by 30cm and is 2 i in length.
The maximum flow rate used was 3.24 m*[s . The flow rate was con-

trolled by double butler Ily valve, and was generated from a fan driven

by a 5.6 Kw, 3 phase motor which rotates at 2900 rpmn.
4.3 The Test Model :

The test model usc.(l in this experiment was a circular cylinder of a 21.5
mm in dimmeter. It is an aluminum tube which has a wall thickness
of 1 mm and length of 440 mm. As shown in fig. (4.1) the test cylin-
der was set horizontally in the central plane of the measuring channel,
It passed through the slots on the side walls of the measuring section
and was supported by two identical plate springs outside the side walls .
This setup allowed the displacement of the cylinder only in the vertical
direction. In order to eliminate the influence of the flow through the
slots blocking plates were atlached to the cylinder at both ends. ‘These
end plates should be cmployed to ensure that the low conditions associ-

ated with an infinitely long, or two-dimensional’y eylinder oceur around

models confined within the working section of a wind tunnel. Indeed,
this technique which relies upon the isolation of interference effects that
arise us a result of the inleraclion of the tunnel wall boﬁlldul'y Inyer with
the model, has been utilized in numerous studies [89-01]. These results

showed that the rectangular plates should have an upstream dimension

(distance of leading edge from the cylinder’s uxis) sulliciently large to iso-

late the horseshoe vortex generated at the wall-model intersection, but
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stnall enough to aveid substantial boundary layer growth on the plate it-
self, and tail dimensions adequate to prevent any wake interferences. In
this respect a plate of the dimensions shown in fig.(4.2) was recommended

as the most appropriate for similar test conditions [89).

Hot - wire props were used to detect the free flow velocity. The ac-
celeration amplitude at one and of the upstream cylinder was measured
using an accelerometer since the aceeleration amplitude of the both ends

were alost the same under all experimental conditions [33]. Vibration
acceleration of the cylinder in the vertical direction was monitored simul-

taneously on the vibration meter and the digitizing oscilloscope as shown

in Fig 4.3 .

4.4 Instrumentation :-

4.4.1 Velocity Measurement (Hot Wire Anemometer.) :

Wlhen an electrically heated wire is placed in a flowing stream heat will
be transferred between the two, depending on a number of fuctors. These
factors are governed by the three dimensionless quantities, the Nusselt (
Ny ), Reynold ( R, ), and Prandt]l numbers ( B, ).
The lheat supplied to the sensor is equal to the heat lost Q and is given
by,
Q=0"=1R | (4.1)
King [85] obtlained the following expression for the heat transfer coefli-

cient.

N, =C 4 DU" (4.2)
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Iromn equalions (4.1 and 4.2) it can be shown that
V= A4 BU (4.3)

Where A, B, C, and D, are constants which are determined by calibration.

The value of n is usually 0.4-0.5 for 0.1 < R, < 10°, The above relation
(Fig. 4.4 ) usually yields straight line when V2 is plotted against U2 [87],

A DISA constant-temperature hot wire ancmometer with a transverse
mechanism, as shown in fig. (4.5), was used in the experiments. It
consists of a wheatestone bridge and servo amplifier. Tl:e. hot wire was
connected with a probe type 55P14 by a straight probe support, the
overall length of the cable which connected from the hot wire to the
constant temperature anemometer was 5m. The output D.C voltage and
the RMS voltage were measured using 55D30 D.C voltmeter and the

55D35 MS voltmeter, respectively.
4.5 Vibration Measurements :

The acceleration amplitude of the vibration in the vertical direction was

measured by an accelerometer type (B & K 4370) attached to the left

end of the test cylinder as shown in fig. (4.1). The output signal of the

nccelerometer was simultaneously fed to the vibration meter type (B& K

2511) and a digitizing oscilloscope type (II p 54501 A). A tunable pass

band filter (B &K 1021) was connccted to the vibration meter to measure

the acceleration amplitude al a desired frequency.
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Fron E([llﬂti()lls (41 and 4.2) it can be shown that
Vi= A4 BU" (4.3)

Where A, B, C, and D, are constants which are determined by calibration.
The wvnlue of n is usunlly 0.4-0.5 for 0.1 < R, < 105, The nbove relation
(Fig. 4.4 } usually yields straight line when V?is plotted against U'/? [87].

A DIS=A constant-temperature hot wire ancmometer with a transverse
mechanism, as shown in fig. (4.5), was used in the experiments, It
consists of a wheatestone bridge and servo amplifier. The- hot wire was
connected with a probe type 55P14 by a straight probe support, the
overall length of the cable which connected from the hot wire to the
constant temperature anemometer was 5m. The ontput D.C voltage and

the RMS voltage were measured using 55D30 D.C voltmeter and the

55D35 RRMS voltmeter, respectively.
4.5 Vibration Measurements :

The acceleration amplitude of the vibration in the vertical direction was

measured by an accelerometer type (B & K 4370) attached to the left

end of the test cylinder as shown in fig. (4.1), The output signal of the .

accelerometer was simultaneously fed to the vibration meter type (B& K

2511) and a digitizing oscilloscope type (H p 54501 A). A tunable pass

Land filter (B &K 1021) was connccted Lo the vibration meter to measure

the acccleration amplitude at a desired frequency.
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It is

i

bd

Iixperimental Procedure :

to be noted that a detailed description of the experimental setup and

procedure adopted in this work is given by [87,88]. They used these mea-

surements procedure to study flow induced vibration of a single cylinder

subjected to a cross flow. The following steps were taken through the

course of the experimental work.

o

- The hot wire was calibrated as described in [88]. then it was placed

in its position which is in the fully developed flow region.

. The vibration meter was calibrated to ensure that it works properly.

The accelerometer was fixed at the lelt end of the cylinder and

connected to the vibration meter.

The digitizing oscilloscope was switchied on and the parnmeters which

govern ils operalion are adjusted,

The vibration meter was connected to the digitizing oscilloscope and

necessary steps were taken to ensure that this connection is done in

a suitable way.

The tunable pass band filter was connected to the vibration meter

when the reading at a desired frequency is recorded, then this filter
was removed, using a linear bypass switch, wlien the time history at

certain velocity is required.

The fan was switched on and the flow was varied in the range (5-

36) m/s. Each time the flow was varied, five minutes were given to
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obtain a steady flow condition.

» The vibration signal was averaged for five readings, monitored on

the digitizing oscilloscope.

« A time-series was chosen and digitized and then taken s o sainple to

be studied. T'his was repeated at certnin conditions, The digitization
(discretization) of these time-serics was carried out at a sampling
rate that obeys the Nyquist formula, that is, the sampling [requency
must be at least double of the Nyquist frequency. Mathematically,

this condition is expressed as,

0, = 3} > 20, (4.4)

where w, is the sampling frequency, and ¢, is the sumpling rate. This

leads to

Ju £ 05per lime sumpling (4.5)

In other words, noting that the natural frequency of the test model
is 120 HZ, a time sampling at a rate of 2 ms will be satisfactory to
contain all the frequency content of the process. Also this sampling

rate leads to a Nyquist frequency of about 500 Hz.

Steps 5-6 were repeated and the acceleration amplitude was mea-

sured,

From time to lime, the hot wire was recalibrated, and the calibration

of the vibration meter and the tunable pass [ilter were tested.
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Chapter 5

DISCUSSION OF RESULTS

5.1 Introduction :

In order to see what sort of informations about the dynamic characteris-

tics of the flow-induced vibration can be revealed using wavelet transform

and are not obtained using classical methods, such as, correlation func-

tions and power spectrum, the flow velocity was varied gradually in the

range of free stream velocitics (5-31.4) m/s. The variation of the RMS of

the amplitude of the aceeleration (€) with frequency was measured in the

' above specified velocity range. Also a number of time series for various

conditions were recorded as described in Chapter 4.
In the following sections, the measured frequency distribution will be

first discussed. Next the experimental time series are studied in section

5.3. These time serics will be analyzed using the two classical techniques

which are correlations functions and power spectrum distribution. Fi-

nally, the advantages and disadvantages of using the new technique of

signal processing, the wavelet transform (WT), in the analysis of the
dynariic processes of concern to mechanical engineers,

such as, the flow-

induced vibration process, are discussed in section 5.6 .
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5.2 Frequency Distribution :

Ile test cylinder was mounted under the condition described in chapter

14 . The natural frequency f, of thul systemn was determined through a

simple impulse test which was found to be f, = 120 llz.

The measured acceleration (2) with frequency shows two resonance
hills one al the nalural frequency and the second at frequency around
three natural frequencies as shown in Figures(5.1 - 5.9). From these
figures it can be scen that, in generul, the second peak was wider in
shape and greater in magnitude than the peak at f={,. This behaviour
is not observed in (Fig. 5.1) which corresponds to U= 5.00 and 5.8 m/s,

where the two peaks approximetly equal, The most accepted explanation

here is Lthat the two modes, translalion and rotationnl modes described

in Chapler two, which are responsible for the presence of these two peaks '

are strongly coupled.

Moreover, another reduced peak for all conditions of this work was
observed ot about [=1/3f, as scen in Figures(5.1-5.0). It is assumed
by Shirakashi[32] that this peak will not appear in the presence of the
end plates, but in our experiment, in which the end plants were used,

this peak did not vanish completely but it was reduced to a small value.
Throughoul this experiment the nceeleration was observed in the attnin
a coustant value at velocity range of (5-11) m/s in the [requency range
(160-120)Hz .

Figure 5.2 shows a decrease of the first peak magnitude, (@we )y wherens

the second (@,p) still constant at about (0.3 m/sec2).In this case the two
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peaks are sharper than these in Figures( 5.3-5.9). As in the previous case
(Pig. 5.1), the acceleration amplitude remains constant g = 0.07Tmm/s? in
the frequency range (160-320) Hz.

For a stream velocity (U) of 8.93 m/s (reduced velocity=3.5), the
acceleration magnitude increased to about 0.24 mm/s? at =/, . In this
case, accelerntion awplitude in the frequency range (160-320) no longer
remains constant and begins to show rapid lluctuations with increasing
velocity. The lock-on region starts at this value U=8.93. It also observed
the @ has a higher value compared to that obtained in the range (5-
11.47)m/s as shown in Fig's (5.1-5.5), i.e, there is a local maxima at this

value(U=8.93 m/s )

Also, for U greater than 8.03 m/s the sccond peak was observed to

start increasing at a foster rate than the first peak.

From ligure 5.4, one can sce that the value of & decreases from 0.24
mm/ s’ at U=10.15 m/s to 0.22 mun/ s* at 11.47 m/s and at U=24.9
m/s,a= 0.5 mwm/ s . An important note licre is that a second local max-
ima in the amplitude acceleration is observed. In this region the rotation
mode trends to dominant as can be seen from Figures(5.5-5.9),where the
ratio of (g:f = 1.0 at (U=11.47 - U=106) m/s. This ratio increnses to
about (%f = 1.5 at U=17.89 m/s, see Fig. (5.0).

In the Fluid-clastic region, the acceleration decreases to about & =
0.3mm/s?, then incrcases to about & = 0.55mm /s at U=28.79 m/s , after
that it continues to increase, such that, at U= 31.4 m/s @ = 0.6mm/s?

The large variations in & at f = 3/, is a characteristic feature of the

Fluid-elastic region, where as shown in Fig.5.9 a successive peaks appear
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at (200-300) Iz with large values of @ , for example, @ = 4.0mm/s? at

U=31.41 m/s when =320 1z and =340 Hz.
5.3 Time Series :

As mentioned in chapter (4) , the sumpling rate were chiosen to be 2 ms
and according to this criterin, dilferent time-series were tuken at dillerent
siluations as described below.

The first time-series was taken at free velocity ( U= 28.794) and the
measurements of vibration acceleration @ were tuken. Figure (5.10) shows
this time series and the first impression about this signal is that one
deals with a random signal, llowever, the certainily of this claim will
be verilied by using test techniques of randommness in the next section.
Another time series (Figure 5.11) for ubout 0.64 sec is tuken at the same
velocily ufter five minules period Lo study similarity between these two
signals . However, these two signals show a big differences in shape and
magnitude,

Figure (5.12) shows the third time series which was taken at a free
stream velocity of 22 m/sec. , i.c., in the lock -on region. The irregular
beliaviour of this time-series continucs to appear. This time-series was

filtered at f = f, i.c., this sigual represents the acceleration distribu-
tion with the tunable band pass filter was tuned to the cylinder natural
frequency f,. This wavelorm shows a beating like behaviour of variable
strength which may be due to the nonlinearity of the process,

Other two time-series at U=19.79 were tuken with the same sampling

rate but for different periods. The first was taken for about 0.64 sec and
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the seccond for 0.32 sce . These two signals are shown in figures (5.13 and
5.14) respectively. Figure (5.15) shows the sixth time-series. This series

represented the waveform of the vibration acceleration @ at U=17.9 . The
last two signals were taken at a lower sampling rate , i.e, 0.4 s and 1.5

ms respectively, The first of them was taken at U= 25 /s, while the
other at U=22.9 m/sec. These two signals are shown in figures (5.16 and
5. 17) .

The above discrete-time signals show a big difference and shape which
indicate the random characteristics of this process. The information car-
ried by these signals using the above representations can not be recon-
structed or implemented and this necessitates other representations of

these signals. This is done in the following sections.

0.4 Correlation Functions Analysis of The Flow
Induced Vibration Signals

In studying the llow induced vibration signals, different correlation fune-
tions are used in order to examine their roles in identifying the random-
ness of the process and try to make use of these correlation properties in
studying the experimental siguals.

The autocorrelation function of the first Lime-series is shown in fig-
ure (5.18). I'lie snme feature of Huctuntion that was observed for the
time-series were also observed for the autocorrelation functions. This
ringing without any systematie pattern of the autocorrelation function is
an indication of the signal randomuness. The trend of the autocorrelation

function to the negative values is an indication for the nonstationarity of
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the time-series, that is , the negative value of the autocorrelation means
that the signal, more likely, varies rapidly and this is the case in auto-
correlation representation of the other time series. See figures (5,18 and
5.23).

The autocorrelation functions of two different signals which taken at
the same velocity, U= 28.79 m/s are shown in figures (5.18 and 5.19).
These ligures show a big diflerence in the behaviour of these signals which

is another evidence of n noustationarity behaviour of the signals that

resulted from the flow-induced vibration phenomenon.

The third tinie-series filtered at a particular frequency (I=f,) shows a
beating pattern which may indicate a strong nonlinear dynamic behaviour
of Lthis process.

The next figures (5.24-5.29) which show the autocovariance of the
vibration time signals represent another evidence of the nonstationarity
of these signals. According to the eriteria represented in chapter 3 the
autocovariance values are to decrense rapidly with incrcqsiug time. 1If
this is violated at one point the process is no longer a stationary one. For
most of the studied signals a rapidly increasing values of & were obtained
which indicate not only the nonstationarity of the process, but also the
possibility of the chaotic motion especially in the lock-on region. This can

be scen by comparing figures (5.24 and 5.27) from one side and figures

(5.28 and 5.29) from the other.

Moreover, studying the flow-induced vibration process through the

crosscorrelation and crosscovarinnce function is examined using figures

(5.30-5.34). These figures show clearly the uncorrelated relationship be-

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



G4

tween two dillerent siguals taken at the same velocity at different periods.
Although these techniques give an answer about the stationarity of

the flow-induced vibration and may check the presence of chaotic mo-

tion, they do not give snitable informations sbout the energy distribu-

tion of the system or on how to control this rapidly varying process which
limits the validity of such techniques in studying the nonstationary pro-
cesses und necessitates other signal processing techniques, In the next

section, the power spectrum representation of these signals will be pre-

sented and discussed. Each of these two technicques, correlation methods
and power spectrum, study a certain signal in different space, the first

in time domain while the other in frequency domain, i.c., they are of

complementary nature.

9.5 Power Spectrum

As pointed out earlier in chinpter 3, the power spectrum of a signal mea-

sures the average rales of fluctuntion of the signal. Also it represents the
distribution of power with respect to [requency.

Figure(5.34) shows the power spectral density of the first time-series
shown in figure (5.10). 'The power spectrum in this Iigl;rc was calculated
using the fast Fourier transform algorithun of the nutocorrelation func-
tions. "This power spectrum is scen lo be a rather irregular function of
[requency. This irregularity is also apparent in the next figures {5.34 and
5.41) which are the power spectrum representation of the other flow-
induced vibration time-series shown in figures (5.10-5.17) respectively.

From these figures the following remarks may be vbserved regarding the
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flow-induced vibration process considered :

1. In some of these figures, two maximum peaks are shown, one at

24

f=/. and the other at around f=3/,. Thesec peaks, however, do nut
show the clear distinguished shape ns they nppear in the measured

frequency distribulion shown in ligures (5.1-5.9).

. The power speclrum representations arve easier to interpret phys-

ically than the representation of the correlation functions or the

original titne signal and this is one of its advantages.

- The power spectrum corresponding to different flow velocities as well

as that for the same velocity and different instants was observed to

vary for different time signals, i.c, for each flow velocity one obtains

a diflerent power spectrum. This indicates the nonstationarity of

the signal.

The continuity and broadness of the power spectrum representations
and the rapid fluctuations are indications that the flow induced vi-

bration process as occurs in Figures 5.30 and 5.40 is possibly chaotic

under these conditions.

. Some figures, such as 5.31 shows a rather an unexpected represen-

tation of the signal which may be the result of experimental error

or sampling representations.

. The variations of power spectrum from positive values, in dB, in

some figures (5.33-5.36) to negative values, in dB, in others (5.37,5.38)
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ensure that this technique is not suitable for the representation of

the nonstationary signals.

. As il is well known, the power spectrum representation can not
give n suitable information apont the necceleration distribution in
; s

the time domain since it is a function of frequency only. This is one

of the disadvantages of this representation.

- The rapid variation of the power spectrum representation makes the
control of this process in frequency domain highly difficult, this is
due to rapid fluctuations of the power spectrum. This is another mo-
tivation for using vther more cflicient techniques such as the wavelet

transform which will be used in the next section to study the flow-

induced vibration signals.
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5.6 Wavelet Transform Analysis of the Flow-Induced

Vibration Process:

Wavelet transform, WT, is a technique for decomposing a signal into com-
ponents that have good localization both in time and frequency. Decause

of these fime and frequency localization properties, WT can provide lo-
cal informmation on a signal that can not be obtained using the previously
discussed traditional techniques. In this study, various types of wavelets
were used to analyze the flow-induced vibration signal, namely, Mallat ,
Duubichies, Meyer, Eighth derivative of Gaussinn, Mexican hat, One cy-
cle of sine, and Modulated Gaussian. These wavelets are compared and
the most suitable one for the representation of the flow induced vibration
signal is selected. The time-scale version of the wavelet transform was
chosen for the reasons mentioned in Chapter 3.

The lime-scale version used here replaced the tinte series or frequency
distribution with a scale parameter related to time and frequency but
not equal to them. The frequency scale obeys the Nyquist frequency

ied < o™ < f,, where 2/,7 < | and the value at the frequentcy scale is

o = \/{:" (5.1)

where f; is an arbitrary value that related to the distribution of the

related to the frequency by:

wavelet itsell’ and called the central frequency.
The wavelet transform representation of the flow-induced vibration

signals are shown in Figures (5.42-5.03). The following remarks can be

observed from these figures.
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1. Processing the measured frequency distribution, at U= 5.0 /s, as

the first signal by the dilferent types of wavelets show the following
(n) The Mallat wavelel, which is usually used in the image coding in
computer vision, does not give a suitable representation of this sig-
nal. In the frequency range (40-800) 11z, in which the low-induced
vibration signal , under our experimental conditions, is active, the
wavelet transform, using Mallat wavelet, behaves as a high pass fil-
ter, i.e, the signal, is filtered here as a noise and is not processed ,
see I'ig. (5.42). This behaviour is due to the fuct that, in image cod-
ing, one often deals with high rauge of frequencies while the present

flow-induced vibration process is, basically , & low frequency process.

(b) The Daubichies’ tight frame wavelet shows a good representation
ol the analyzed signal, Fig. (5.43). The signal was filtered clliciently
and the overall scene of the signal was very clear. However, in

using this wavelet a finer scale is needed in order to lhave g more

satisfactory representation.

(¢) The Meyer’s wavelet, which is a special type of Daubichies’ tight
frame wavelet, did not detect the signal at the scale used in this
investigation. The efficient usage of this wavelet requires a large
computer storage capability which was net available in the present
work; for example, the grid used in the presentation was relatively

high (m=1), for a finer resolution a grid of logarithmic scale (say
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0.1) should be used which requires increasing the storage memory

needed by a factor of 1000,

(d) The resulls of last four wavelets; Mexica hat, One cycle of sine,

Eighth derivative of Gaussian, and Modulated Gaussian, as shown in
Figures (5.44-5.47) show a good representations of the flow-induced
vibration signal. They act like band pass filters that is, the irreg-
ularities in these sipnals were attenuated then these siguals were

properly distributed over the time and the frequency. However, the

modulated Gaussian wavelet is considered to be the more reliable
one for processing the flow-induced vibration signals as it has a low
centered frequency (fy = 5.3) with relatively small band width. This
cnable this wavelet to detecet then analyze these signals properly.
Also the modulnted Gaussion can be computed clliciently as it does

not require large compuler memory in comporison to Daubiechie”s

and Meyer’s wavelets.

. Wavelet transform, considered as titne-frequency analyses method,
cnables one to sce the signal in both time and frequency domains as
can be seen in Figures (5.42-5.03), For example, the WT describes
the flow-induced vibralion signals as temporal multiresolution de-
composition as shown by the time-scale; that is, at a fixed resolution
of frequency scale the flow-induced vibration signals can be viewed

with progress in time. Also, the WT describes the flow-induced vi-

bration signals as a subband frequency decomposition as shown by
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0.1} should be used which requires increasing the storage memory

necded by a factor of 1000,

(d) The results of last four wavelets; Mexica hnt, One cycle of sine,

Eighth derivative of Gaussion, and Modulated Gaussian, as shown in
Figures (5.44-5.47) show a good representations of the flow-induced
vibration signal. They act like band pass filters that is, the irreg-
ularities in these signals were attenuated then these signals were
properly distributed over the time and the frequency. However, the
todulated Gaussian wavelet is considered to be the more reliable
one for processing the flow-induced vibration signals ns it has a low
centered frequency (fy = 5.3) with relatively small band width. This
cnable this wavelet to detect then analyze these signals properly.
Also the modulated Gaussian can be computed clliciently as it does
not require large computer wemory in comparison to Daubiechie”s

and Meyer’s wavelets.

Wavelet transform, considered as time-frequency analyses method,
cnables one to see the signal in both time and frequency domains as
can be scen in Figures (5.42-5.63). For example, the WT describes
the flow-induced vibration signals as teimporal multiresolution de-
composition as shown by‘ the time-scale; that is, at a fixed resolution
of [requency scale the How-induced vibration signals can be viewed

with progress in time. Also, the W' describes the flow-induced vi-

bration signals as a subband frequency decomposition as shown by
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the frequency scale; that is, at a fixed resolution of time, i.e., a dis-
tinet timme instant, the flow-induced vibration signals can be viewed

at different subband of frequencies.

- Most of the significant frequency and time propertics of the anulyzed

signal presented in the above figures can be seen in a coarser view
than in the original signal. These figures show clearly the regions
of intensive energy distribulion, at a frequency scale of (-2) to (-3),
the moderate region, (-1.2) to (-2) and (-3) to (-3.2), and low energy
region outside these intervals, where (0), (-1.2), (-2), (-3), and (-3.2)
frequency scale corresponds to (5), (28), (85), {339), and (448) Hz
respectively as estimated from equntion (5.1). These results are

in full sgrecment of these oblained from the wmcasured frequency

distribution Figures (5.1-5.0). Moreover, according to time-scale, in

most of Lthese ligures the peak at f = Jw appeares firstly, then the
combination of this peak and that at { = 37, appeare after an initial

period of time. These results were not observed by using any of

aforementioned classical technicues.

By comparing Figures (5.18-5.41) which show the flow-induced vi-
bration time series analysis using classical techniques, with those
corresponding to the wavelet transform representation of these sig-
nals, Figures (5.56-5.63), the wavelet representations of these signal
were more simplified than those obtained using classical techniques,

Despite this simplicity, the main characteristics of these signals are

not ignored but they are, somehow, wmuplified. For example, WT
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represcutation show clearly the energy distribution at each single
point of time instant and frequency band; that is, the zones of en-

ergy are clarilied, also the dominant peaks are amplified.

As shown in Figures (5.47-5.54) the wavelet transform code the sig-
ual elliciently in such a way that the data needed to represent the
whole signal, in the case of the wavelet transform, is fewer than the
original signal. That is, auy software realization of the wavelet rep-
reseutalions, figures (5.45-5.63), only implement a finite numbers of
octaves from (4) to (-4) frequency scale. As the wavelets (filters)
used,‘ns a principle, are derived from the "mother wavelet”, sce
section 3.3, one can code the the flow-induced vibration signal at a
specific scale, sny (-1) requency scale, and then construet the other

representations at other ocluves from this specified scale,

. As it is well known that the most popular approach to identify a non-

stationary system, i.e, time-varying system, is to employ an adaptive
algorithun and try to track the system’s trajectory. Despite the wide
use of this approach, it can not handle rapidly varying systems, such
os the flow-induced vibration process. If the coellicients chaugé [ast
enough, compared to the algorithm’s convergencee time, the adaptive

algorithm will not be able Lo track the system’s time evolution.

To overcome this problem, more explicit modeling of the coefficients’
evolution is required. One approach is to impuse the probabili-
ties structure on the coellicients’ trajectories and regard them as

stochastic processes. Then, the coellicients are estimated with the
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use of Kalman filtering [94].

From a general look to the wavelet representation of the different

signals one may consider that the randomness of these signals no
longer exists, nnd this is why WP is used extensively to study non-
stationary signals. These properties make the estimation of the
system parameters (cocllicients) related to the dynamic response
of the system much elfective in identifying the stability boundaries

and then to control the process effectively. This may be done by ex-
\

panding each time-varying coeflicient onto a set of basis sequences.

If each coellicient’s time-evolution can be well approximated by a

combination of a small number of basis sequences, then the iden-

tification task is equivalent to the estimation of parameters in this

expansion [04].

The employment of the mulliresolution ideas to address the approx-
imation of the aforementioned time-varying coellicients and propose
a wavelet basis for the coeflicient expansion will better model the
local as well as global characteristics of the system’s trajectory, and,
hopelully, will provide guidelines in choosing the optimal wavelet
basis for the given problem [94). From the wavelet transformn re-
sults Fig’s [5.47-5.54], there was one mnjor dominant frequency.
Hence, by using WT to determine the local dominant frequencies,
n more accurate way ol estimating the system parameters may re-
sults. Also, since the information concerning the frequency content

obtained from WT may describe the dynamic behaviour of the sys-
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Figure 2.2: Sketeh of alternale vortex shedding process behind a circular

cylinder A sequence of vents begins at (1) and continues to (8), [30]
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Figure 5.61 :The wavelet transform of the 6th time-s

ulated Gaussian wavelet
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Appendix A

\-

PROPERTIES OF THE
FOURIER TRANSFORM

i89

A.1 Representation of Sequences by Fourier Trans-

form

Many sequences can be represented Dy a Fourier integral of the form

z[n] = 2—;— /:: X(exp™)exp™” dw (A1)
where .\'((!xpi‘”) is pgiven by

2(exp™) = Y afn)exp® (A.2)

n=—oc0

Equations (A.1) and (A.2) together form a fourier representation for
the sequence. Equation (A.1), the inverse Fourier transform, is a syn-
thesis formula. That is, it represents x[n] as a superposition of infinites-
imally small complex sinusoids of the form %;\P(G:{pﬁ")(e,‘{p'}”")dw with
w rauging over an interval of length 27 and with ,\'-(exp"“’) determining
the relative amount of cach complex sinusoidal component. Although in
writing Equation(A.1) we have chosen the range of values for w beiween
—rand 4 7, any interval of length 2r can be used. Equation (A.2), the
Fourier transfori, is an expression for computing X(exp™) from the se-

quence x(n}, i.e., for analyzing the sequence x{n] to determine how much
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of each frequency component is required to synthesize x[n] using Equation

(A.1).

Spmetimes we will refer to Byquation (A.2) more explicitly as the

discrete-time Fourier transform, purticularly when it is important to dis-

tinguish it [rom the continuous-tizae Fourier transform.
In general, the Fourier transfornt is o complex-valued function of w As

with the frequency response, we sonetimes express X(exp™) in rectangu-

lar form as
z(exp™) = Xp(exp™) -+ iX; (exp™) (A.3)

.
or m polar form as

z(exp™) = |X (exp™)] exp"/"t('”‘p;w) (A4)

The quantitics | X (exp™)] and {X(exp™} are called the magnitude and

phase, respectively, of the Fourjer translorm.  The Fourier transform

is also somelintes referred to as the the Fourier spectrum or siinply the

spectrum. Also, the terminology magnitude spectrum or amplitude spec-

trum is sometimes used to refer to | X (exp™)] and the angle or phase

[X(exp'.“) is sometimes called the phase spectrum,

A.2  Symunetry Properties of the Fourier Trans-
form ‘
In using Fourier transforms, it is useful to have

a detailed knowledge

of the way that properties of the sequence manifest themselves in the

Fourier transform und vice versa, Symunetry properlies of the Fourier

transform are often very useful, The following discussion presents these

' d - Library of University of Jordan - Center of Thesis Deposit
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propertics. A conjugate-symmetric sequence z.[n] is defined as a se-
quence for which :l:[H,] = gt [-*'n,]_, where * denoles complex conjugate.
A conjugnte-nntisymmetric sequence z,fn) is defined as a sequence for

which :v[n] = i [——n]. Any sequence x[n) ean be expressed ns a suin of a

conjugate-symmetric sequence and a conjugnte-antisymmetric sequence.

Specilically,
Xln] = X,fu] + X, (A5)
where
Xele] = 5(Xln] 4 X*n) (A.6)
ardl
Xolal = 3(X[u] = X*[n) (A7)

A real sequence that is conjugnie-symnietric such that Xe[n] = Xe[-2]
is cnlled even sequence, and a real sequence that is conjugate- antisym-
mebrie such that \, [n] = Xc[-*n] is called an odd sequence.

A Tourier transform X(cxpi“’) can be decomposed into a sum of

conjugate-symmetric and conjugate-antisymmetric functions as

Xexp™) = X (exp™) + X, (exp™) (A.8)
where
Nefexp™) = %,\‘(cxp““) + X (exp™™) (A.9)
and |
Noexp™) = = X{exp™) + X {exp™™) (A.10)

Clearly, .\, (c}{])i‘”) is a conjugate-synunetric and Xg (exl)f”) is conjugate-

antisymmetric; i.c.,

Xelexp™) = X (exp™) (A.11)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



191

propertics. A conjugate-symmetric sequence z.[n] i3 defined as a se-
quence for which m[n] = "*[—n], where * denotes complex conjugate.
A conjugate-antisymmetric sequence z,[n] is defined as a sequence for

which ;L'[n] = —:l:*[—n]. Any sequence x[n] can be expressed ns a sum of a

conjugate-symmetric sequence and a conjugate-antisymmetric sequence.

Specilically,
X[n) = XJu) + X, ] (A5)
where
Xel) = 5 (Xn] 4+ X*[-)) (A5)
and
Xole] = 5(X[r) - X*[-)) (A7)

A real sequence that is conjugnte-symmeetric such that N, [n] = A’c[—n]
is called even sequence, and a real sequence that is conjugnte- antisym-
metric such that X, [n] = X, [—n] is called an odd sequence.

A Fourier transform X(expﬁ") can be decomposed into a sum of

conjugate-symmetric and conjugate-nntisymmetric functions as

X{exp™) = X, (cxp™) -+ X, (exp™) (A.8)
where
Xe(exp™) = %,Y(cxl)i"’) + X*(exp™) | (A.9)
andd
No(exp™) = :*!f\'(c:q\'.“’) X (exp™) (A.10)

Clemdy, Xo(exp™) 1s o eondngate-aymmelrle and X, (0xp™) s gondugnte-

antisynunnliie; be.,

No(onp™) = X! (rap=) (A.11)
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and

Xo(exp™) = X2 (exp™) (A.12)

As willi sequence, il a real funclivn of a continuons variable is conjugate-

syminetric, il is referred to ns an even function, and a real conjugnte-

antisymmetric funclion of a continuous variable is referred to as an odd
[unction. The symmelry properties of the Fourier trnusform are summa-

rized in table A.1 . The first six propertics apply for a genernl complex

sequence x{n] with Fourier transform .Y(exp“")

A.3 Tourier Transform Theorems

In addition to the symmetry propertics, a varicty of theorems relate op-
erations on the sequence to operations on the Fourier trausform., These

- theorems are quite similar in most cases Lo corresponding theorems for
continuous-time signals and their Fourier transforms. To facilitate the

statement of these theorems, we introduce the following operator nota-

tion:
X(exp™) = fla(n]} (A.13)

2ln) = [ { X (exp™)} (A.14)

X[n) L X(exp™) | (A.15)

That is, f denotes the operation of "taken the fourier transform of x{n]”,
and f=!is the inverse of that operation. Most of the theorems will be

stated without proof. The theorems in this section are summarized in

table A.2.
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A.3.1 Linearity of the Fourier Transforin

1r

Xiln) «Ls X, (exp™)
nnd

Xoln) Ly Xa(exp™)
then

aXifn] + bX <L 0 X, (exp™) + bX,(exp™)
A.3.2 Time Shifting and Frequency Shifting
If

X|n) <L X(exp™)
then for the time-shifled sequence,
N —ny) RN exp ™" X(exp™)
and for the frequency-shifted Fourier transform,
exp™ wln] <Ly X(expieee)

A.3.3 Time Reversal

1f
X(n] <L» X(exp™)
then il the sequence is time reversed,
X[-n] PN X(exp™™)
and if x[u) is real, this theorem reduces to

X[-n) <& X" (exp™)

193

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
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A.3.4  Diflerentation in Frequency

If
X[n) <& Xexp™) (A.25)
Lthen
X |[n] L id’\ (;j;pi-)- (A.26)
A.3.5 Parseval’s Theorem
If
X[n) <& X(exp™) (A.27)
then
infly
B= 3% |X[n} (A.28)
or,
o Lo :
=y f X (exp™ )| dw (A.29)

The function IX(e.Kpi“’)l2 is called the energy density spectrum since
it determines how the energy is distributed in frequency. Necessarily, the

energy deusity spectrum is defined only for finite-cnergy signals. Parse-

?

val’s

A.3.6  'The Convolution Theorem
1r

X[n) <L X(exp™) (A.30)
and

hn] oLy H(exp™) (A.31)
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and if

then

A3.7

If

and

and il

then

=]

vl = D0 alklhfn - k] = z[n] * hin

k=-c0o

V(exp™) = N(exp™) H{exp™)

The Modulation or Windowing Theorem
X[n] L X(exp™)
wn} YN W(exp®)

y[n| = z[njwn]

’ | S L ; ;
Y{exp™) = Er'-/-n X(exp® )W (exp'e-9)
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(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)
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Table A1 symmeiry prorenes or o FOURIER TRANSIORM

Seqquence Fouricr Transforn

x[n] X(e!)

L x*{n]

2 x*[~n]

3. Aefx{n])
A. j Fo{x[n])

X*e )
X* (et
X (/) (conjugate-symmetiic part of X(e™))

X, (™) (confupate-amtisymmettic prat of

X(e™p
3ox,ln] (eonjugate-symmctic patl Xo(e?)
ol x[(n])
6. x,[n] (conjuge-antisymumet i FX (el}

part ol x{n))
The Tollowing propertics apply only when x[n] is 1eal.

1. Any real x(n]

M) = X eI (Fourier tanslorm is
conjugate-sytumetric)

8. Any real x[n) Xate) = Xp(e ™) (real part is cven)

9. Any real x[n] Xp(eh) = = Xy(e ™) (inaginary part is
odd)
10. Any real x[n] LY (™) == | X (e 1)) {magnitude is even)
. Any rc:l[_x‘tnj EX(eM) = — g X(e ™) (phase is odd)
12 xIn]  (even part of x[a}) X (o™
13 x,[n]  (odd parc of x[n]) J ¥ e
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Table (A.2) rouier iansFoORM 11HEOREMS

Sequence
x[n]
ylnl

[Fourier Trauslform
X(ef"’)
¥(e/™)

. ax{n] -1- by(n]
x(r =] (ry an inteper)
e n]

x{=n]

= B o

5. nx|n]
0. x{n)+ ylnj
1. x{n]y{n]

Parseval’s Theorem

!

d X () - by (el -
¢ "I X (el
X ften ity

X(c -]m)
X*(ef™) il x[n) real.
. rf,\'(r?’"')
dwm
L (™Y (e

[ . :
5 [ X (™) Y (et =My
2 4 I

5. ) Ix["]l‘=_—~[- J X ()| d

LS v] 2’

oy

. .o . ,
9. x(nly*[n] = 5 J X( )Y *(e!) dw

A= - m
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“Passive” Unterberier distribution {PUD):
PUD, (t.)) =IJ-O Xjin x'({; ) III e T 1p

Pseude Wigner distribution (WD)
5 t T, . T igar
PWOL (tfy = [ aaee (=20 - 5y ¥ 2

de=f ey o ar

with H(f) = J 11(%) 1'(~ %) ed 2 4y
Real-valued generalized Wigner distribution (RGWD):
RGWD (t/) = Re [GWL)EJ" (tf) ]

Reduced Interference distribution (RID)':
RID,(t.f) =) J S(tv) A vy ef S5 dv,
¢ L

with s (@) = Q for lal > 12.5Me,.510)=1. —d*S(ﬂ)

afl =8

p=0
Rihaczek distribution (RD):

RO (LS = xits 0 (1) @92V gp o SN () el T

Scalogram (SCALL
.

SCALY (e.fy = 1w (012 -

X

. e . !
J AT I 2 ".’-(!'—t) dt’ i

’ Jo o i
Smoothed pseudo Wigner distribution (SpwD):

SPWD'E M (1 /) = J [J‘ JU=L)x (" +2) ¢ g o =yt J r;(%) (- %J ed ¥ g o

Ir-l,r-g“"") HU- W/ de dpr wien e ngm - el g
Spectrogram (SPEC):

S"“C"” = |STFY s T L A ,2
el (L) = STy (L) = U T -ty e dt

t

]

Wigner distribution (\WD);
W lts) =f Xt +;’ yx' (-

[

) PR de =‘|’v X Er v X - %) ot 27 v
Honlinear, nonquadratic TFRs

Signal-adapliv; radially-Caussian kernel distribution (RGD)*:

RED (S =] | Wetnmyagiewy e 20050 g
5
(z/% 2:-'(\.' vt viv
with l!’_\. (t.v) = exp| - _2)—’: / n) “ B = arclan —./_9.
26, () LA

Cohen's nonnegative distribution (CALD):
el FINIEET L
CHDIE (tf) = ~— Nt

X

[ Lrep (i, mU')_‘]J

-

a il . "
Mth.‘,x{t)zfl-‘r laty 17 de, ‘1_\Ui=‘El_J ! :x'rf')IZ(U". E,‘_,:J Late )= e
x - x {
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Appendix D
MULTIRESOLUTION THEORY

D.1 Introduction to Multiresolution Theory

The analysis of a noustationary signal often involves a compromise be-

tween liow well discontinuities can be located, and how finely long-term

behavior can be identificd. These Lwo fuctors impose Lthe restrictions in

using a suitable window and in determining its length when dealing with

Short Time Fourjer Translorm (STI'L). When using wavelet transform

(WT) vue looks at o signal at diflerent seplog or "resolutions”, At these

different resolutions the details of o signal generally represents different

views of the scene, ie, at a coarse resolution, these detajls correspond to

the overall view which may be gz stationary view but a finer resolution

reveals the discontinuities,

Now, let Ay be the operator which approximates g signal at 8 resp-

lution 2;. The sigual f{x) is mensurable and has a finjte etergy, that is,

(=) ¢ 12(1), where L2(1) denoles the ve

clor space of mensurable, squnre

integrable one-dimensional funetions [{x).

Some of the properties of 4 are sumimarized Lelow [47)

L. Ay is a linear operator and it is o projection operator on a partic-

d - Librarjf of University of Jordan - Center of Thesis Deposit
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ular vector space Vj; ¢ L*() , where Vai 1s the set of all possible
approximations at the resolution % of o function in L}(R). A,; is not

modified if it is approximated again, ie, Ay ©Q Ay = Ayi

2. Ay [(x) is the most similar approximated fanction Lo the f(x) , that

is Yg(z) € Vy; _
(=) = 1@} 121l Az f(=) ~ f(2) | (D.1)

Hence, the operator Ayi is an orthogonal projection on the vector

space 15;
3. The approximation ut o resolution 27t containg the spme signal at

Y,ie,Vjez

of Jordan - Center of Thesis Deposit

Vai € Vyina (D.Z)

4. An approximation operation is similar at afl resolutions. The spaces

of approximated functions should thus be derived from one another

by scaling each one by the ratio of their resolution values, le, Vi €z

J(z} € V3 = f(2z) € Vyin (D.3)

5. When {{(x) is translated by a length proportional to 279, Ay f(x) is

translated by the same amount and is characterized by the same

samples which have been translated when Je(2} = f(z - k}, at a res-

olution j=0,
Ah(z) = A f(2 - k) € Vyins (D.4)

0. As the resolution j increases to +(oo) the npproximated signal should

converge to the original signal, conversely as the resolution go to zero
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the approximated signal contains less information and converge to

7Zero.

fim Vyi = UZ Vysis denseinl?(12) (D.5)
J—1o0
and

3 lim Vi = N2 Vi = {0} (D.6)
J-too

Il a set of vector spaces Vy satisly the properties (D-1 to D-0) it will

be a multiresolution approximation of L}(R)

The operator A, is an orthogonal projection of V. In order to nu-

merically characterize this vperator, one must find an orthogonal basis

of 1% and this is achieved by the following theorem [47]

Theorem 1: let Vi be a multiresolution approximation of L*(R). There

exist a unique function $(z) € L*(R) called a “scaling function”, such

that il we sel ¢y (a) = Zj(/)(:lj:t:)furj € z, the dilation of ¢(z) by 2/, then
V273 gy, (x — Z“jn)whercn € z is an orthogonal basis of Vj;

For example one can build an orthoronal basis at uny V,; by dilating a
g B

function ¢(z) with a coellicient 2 and translating the resulting function

on a grid whose interval is proportional to 2, The functions ¢2i(z) are

normalized with respect to LYR) norm. The coellicient 2-6/2) appears

in_the basis set in order to normalize the functions in the L2(R) norm.
For a given multiresolution approximation Vyiwherej € z, there exists a
unique scaling function #(z) which satislies theorem 1. But for different

resolutions approximations, the scaling functions are diflerent.

Lemarie [46] has shown that the scaling function associated with such
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a multiresolution approximation can be written

- 1
O —— (01)
w" 22“(&.’)
where (n=2--2p) and (2p4-1) is the order of the polynomial and splines

(2 4]

Bafw) = E w) + 2krr) (R:E)

—00

Mallat [17] computed a closed form of E,,,(w) by caleulating the deriva-

tive of order (n-2) of the equation

1
7 N D.9
2(w) = 4sin{w/2) W)
The orthogonal projection on sz can now be computed by decom-

posing the sigual f(x) on an orthonormal basis given by theorem 1,

Vi(=) € 12(1t)

Ay f(2) = 279 5?: < f(u),d(u — 2770) = iz — 277) (D.10)

wiiere in general

< f(u),g(u) == fm J(w)g(n)du (D.11)

—0Q

The approximation of this signal at 2/ is given by

Ay f(w) == J(u), i (u — 279n) > (D.12)

where A f(2) is the diserete npproximation of [(x) at the vesolulion 2,

The above equation, however, can be interpreted s a convolution

product evaluated at a point 273, or

A% J(=z) = (f(u) * rﬁz;(—rc))(?“jrz) (D.13)

where * stands for convolution product.
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Moreover, us ¢(z) is a low-pass filter, this discrete signal can be inter-
preted as o low-pass filtering of [(x) followed by a uniform sampling at
the rale 27,

In an approximation operation when removing the details of f(x)

smaller than 277, we suppress the highest frequencies of this function
. Also the family of funclions \/ZTj(/)zj (x - Z—jn)) € Zis an or-
thonormal family [47].

To calculate these discrete approximations, let ¢(z) be the scale func-
tion and the family VZ‘U'H}(])?“(:L‘ — 2_(j+1)k) where k € z is an or-
thonormal basis al Vi, One knows that for any n € z, the function

dai(z — 277n) is 0 member of Vi which is included in Vi, and thus ¢l(z)

can be expanded in this orthonormal basis of 12in s equation (D.11)

$ri{z—2"7n) = 2-U+) Z ~ d),;(lt-—Z‘jn),r/)z,'+1(u—2_(j"'1)k) - (/;2,.-.;1(:1:—2'(“”&:)

k=0
(D.14)

The above equation can be written as

2-UH) g (u—2'j11),q’72f+:(u——TU'H)k) == ga-1(u), $(u—(k—2n)) = (D.15)

And by the same way

< I b (u=2) = D < s ), (b 20)) < £(), dains (u=2"0GH) o

k=—
(D.16)
Let H be n discrete filter whose inpulse response is given by
h(n) == o1 (u), p(u — n)) > (D.17)
and
H{w) = 3 h(n)exp™™ (D.18)

k=—p0
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and let /T be the mirror filter with impulse response i(n) = h(—n). Then

< (1), i (e — 2770) »= i fa(2n — k) =< f(u), dpies (w — 270 E) > (D.19)

k=-w0

Equation (ID-19) says

1. A3 = The convolution of A%,, f(u) with i and keeping every other

sample of the outpul,

2. All 4% f(u), when j;0, can be computed from A? {(u) by this process.

3. This discrete filter H with the above mentioned impulse response
k
': . L] - . . L -
has a certain relation with the scale function and is determined in

another theorem by Mallat [17], that is,

dw) = 1%, H(27"w) (D.20)
and

$2w) = H(w)p(w) (D.21)
Aud from equation (D-8)

Ton(w)

H(w) = —-——-————zzn 22"(2“})

(D.22)

D.2 The Wavelet Representation

The W'I' is simply the dillerence of the information available at
two successive resolutions 27 and 27+! and can be called the detailed
signal. The role which the scale function play in the case of the

resolution signal is the same Lo the role of the wavelet function in the

case of the detail signal. The procedure used in the previous section
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to illustrate the construction of the scale fumction will be closely

followed in explaining the development of the wavelet function;

Tlicorem 25 Let (Vai)je, be n multiresolulion vector space sequcnuce,

() the scaling function, and II the corresponding conjugate filter,

let ¥(z) be a funciion whose Fourier transform (I'L) is given by,

Ap(w) = G(w/2)(w]2) (D.23)
with

G(w) = exp S H(w_—l- ) (D.24)
Let 1 (1,) = ij(zj(ﬂ:)) denote the dilation of y(z) by 2. Then
(\/'_2171/1(:1:*2_-7'1&)"@) is an orthonormal basis of 0, and (\/szj (:L'-—

2_j77')n,j(;z’) is an orthonormal basis of L2(R), where O, is an orthog-

onal complentent of Vy; in Vi, OR; Oy @ Vo = Voin

It follow from (D-23) and (D-24),

gb(w) = exp ™™ H{w/2 + w)(j)(w/Z) (D.25)
j' w) = cxp—iw/:! Ein(w/2 1S ﬂ-)
e wh \J EZ,,(w)Ez,,(w/Z) (D.26)

Now, one can select the approprinte scaling function, for example,

taking p=1 and thus n=4, n wmuliiresolution approximation built

from cubic splines can be obtained, that is,

Ny(w) = 5+ 3u(cos(§;i )+ 3u(cos(;—’)2)(si,.(;—’)2 ) (D.27)

and

Nafeo) = 2eos(3 )i ( 1)) + T0(eos(2)") + g(sm(‘-z‘—’)ﬁ) (D.28)
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then

_ Nlw) + N2(w)
B 195(sin(w/2)8 (D-29)

La(w)

From ihis function the wavelet funclion hns heen completely de-
termined . Iowever depending upon choice of l{w), the sealing
function ¢(z) can have good localization both in time (spatial) and

TFeurier domains.

The decomposition of a signal in an orthonormal wavelet basis gives
an intermediate representation between time and Fourier represen-
tations, and this can characterize the local regularity of a function

f(x) bused on the cocllicients in a wavelet orthonormal basis ex-
pasion, for example, from the asymptotic rate of decrease of the

wavelet coellicients, one enn determine whether the hinction [(x) is

n times diflerentinble at o point, say, z,.

Now, let Poyi be the orthogenal projection on the vector space O,;,

nccording to theorem 2, this operator ean be writben as

Poyj =277 i < S(w), ¥oi(t — 279n) & tyi(z — 277n) (D.30)

n=-—o00

and this is the detail signal at 2/, also similar to (D-11) and (D-12)

the discrete detail signal ean be implemented as,

Dy f(2) =< f(u), $os( — 29m) = (D.31)
or,

Dot [(x) = (F(u) * s () (2 P n)ues (D.32)
i.e, the discrete detail signal is the convolution of [{u) with ¢(-u)

evaluated at a point 2-75. Also, the wavelet 4(z) can be interpreted
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as a band-pass filter whose frequency bands are approximately equal
to [—27r, —7]U[m, 2x]. Hence the Dy deseribes f(x) in the frequency
bands [—2_(3-“)%, —2_(j)7r] U [2-—(;‘)71.’ —-2"(”1)7?]

It is uscful to say that this model is diflicult to be interpreted in
terms of a frequency decomposition because the overlap of the fre-
quency channels, despite that this overlapping can be controlled
thanks to the orthogonality of the decomposition function, the in-
terpretation in the frequency domain provides an intuitive approach

to the model [47]). Following the same steps from(D-13 to D-20) one

can computes the wavelet representation.

For any n € z, the function )y; (1, — Z_Jn) is a member of O, C Vo,

and can be expanded as

1,’)2;.“(;1:----2“5-”,) = 9~(i 11} }: < 1y (15—2"j11),(/;2;-r|(1L—~2_(j"'l)k) - (/’2:41(.’1}-—2“”?”1
k=00

(D.33)

The above equation can be written as

270 < i (w — 2790), s (w — 2G4 R) = gy (), B ~ (K — 20)) >
(D.34)

And then

< @) P (u=2m) = 3 < (), Bum(k=20)) < f(a), dares (u—2-5HD)
k:=—o0

(D.35)

let G be a discrete filter whose impulse response is given by

9(n) == o1 (), ¢z = m)) > (D.36)
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and let /7 be the mirvor filter with impulse response h(n) = I(—n).

Then

~ f(ll.),l/!,'j(ll - 2‘ju) b= )E g(2n — k) = I

k:—m

), dain (u — 2-171 ”/:) -
(1.38)

Equntion ().38) snys

(n) Dy = The convolution of A [

other sample of the ouiput.

(L) A f(u) cun be computed by successive decompusing A3 f(u)

into A7, f(u) nudd Dj; [{u) for —J <j <

(¢) The impulse response of filter G is reluted to the impulse re-

tpeuse of the Giller 1T 1y
g0n) = (1) = mh(t - n) (L.39)

and G is n high pnss Hlter nd thus equation (D-38) can be

considered ns o high-uss ftering of the discrele signal Ay

I(u)

u} with /I nad reluining every.

=
n
o
o
)
A
7]
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Q
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CCCCCCCCcolCcecccecceeeccoceeceececeececrececeeecececcceececececececcececeecceccecccececccecccecee

C
C
C
C
Cc
Cc
c
C
C
Cc
c
C
C
c
C
C

10
20

MAIN PROGRAM : CORRELATION HMETHOD FOR PCWER SRECTRUM ESTIMATION
BY USING THE FAST FOURIER TRANSFORM
INPUT HE v THE SECTION SIZE
N THE NO. OF SAMPLES TQ BE USED IN THE ANALYSIS -
MODE THE DATA FORMAT TYPE

MODE = 0 AUTO CORRELATION

MODE = 1 CROSS CORRELATIOHN

MODE = 2

MODE = 3 CROSS COVARIANCE

IWIN = 1 RECTANGULAR WINDOW

IWIN = 2 HAMMING WINDOW

L THE NO. OF CORR. USED IN THE SPECTRAL
ESTIMATE . 2<=L>=1

NFFT THE SIZE OF FFT USED TO GIVE THE SPECTRAL

C
C
C
c
c
C
c
AUTO COVARIANCE Cc
o
c
c
c
Cc
C
ESTIMATE . L<{=NFFT>=MAXM C

c

CCcCccceceeecceceeecececeeceeeceeeccecececeecceceeceecccececeecceccecceceeceeeecce

DIMENSION XA(512),XFR{257),XA5(512),TT(512),Y(512)
DIMENSION JWIN{2,4)
DIMENSION ILAG{257)
COMPLEX X(512),2(257),XMN,XI,YI
REAL NSECT
INTEGER TTI,TTO
DATA JWIN{1,1), JWIN(1,2),JWIN(1,3), JWIN(1,4d
DATA JWIN(1,1}, JIWIN{1,2),JWIN(1,3), JWIN(1,4
OPEN{UNIT=1,FILE="TTI.DAT',STATUS='0QLD")
OPEN{UNIT=4,FILE='TTT.DAT’ ,STATUS='0LD")
OPEN(UNIT=5, FILE="TTT9.DAT',STATUS='0QLD")
OPEN({UNIT=2,FILE="TT0.QUT',STATUS='NEW’)
OPEN{UNIT=3,FILE='LP1,0OUT"',STATUS='NEW’ )
OPEN{UNIT=8,FILE=’pll.out’,STATUS="'NEW’ }
OPEN(UNIT=9,FILE='pl2.cut’,STATUS='NEW')
MAXN=512
MAXH=MAXM/2+1
DO 10 I=1,MAXH
ILAG(I)=I-1
CONTINUE

READ (1,2) H
FORMAT(I4)
WRITE (2,1)n
FORMAT (18t SECTICON SIZE = ,14)

/1HR, 1HE,1HC,1HT/
/118, 10A, 111, 1HG/

St

IF(H.GT.0.AND,.M.LE.MAXI{) GO TO 30
WRITE(2,3)

FORMAT( 30H ILLEGAL INPUT--REENTER VALE )
GO TO 20

READ(1,5)}N

FORMAT{I5)

WRITE {2,4) N

FORMAT( 38HTOTAL NUMBER OF ANALYSIS SAMPLES =, 15)
LSHFT=M/2

MHLF1=LSHFT+1
NSECT=(DBLE{N)+DBLE{(LSHFT)~1.)/DBLE(LSIFT)
READ (1,7)HODE

FORMAT(I1)

WRITE(2,6) MODE

FORMAT({10H MODE = ,I1)

READ {1,9)FS
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9 FORMAT{F10.4)
WRITE(2,8)FS 216
B FORMAT( 30H SAMPLING FREQUENCY IN HZ =, F10.4)

11

70

21
12
80

90

444

100
110

120

130

WRITE(2,11)M,N,HODE, FS

FORMAT( 311 M=,I4,4H0 Ne=,15,701

F10.4}
IF(MODE.LT.2)GO 10 80
55=1.
NRD=LSHFT
X5UH=0,
YSUM=0,
Do 70 K=1,H
READ (4,333) TT(K},XA(K)
XAS(K)=XA(K)
PRINT*, TT(K),XA(K)
XSUM=XSUM+XA(k)
IF(MODE.EQ.2)GO TO 70
READ(5,333) TT(K},Y(K)
¥YSUN=YSUM+XA (k)
CONTINUE
XMEAN= XSUM/DBLE(N)
YMEAN = YSUM/DBLE(N)
IF(MODE.EQ.2) YMEAN=XMEAN
WRITE(3,21)
FORMAT{//)
WRITE (3,12)XMEAN,YHMEAN
FORMAT( THXMEAN= ,F15.4,
XHN= DCMPLX{XMEAN, YMEAN)
§5=1,
NRDY=H
NRDX=LSHFT
Do 90 I1I=1,N
Z(I)=(0.,0.)
CONTINUE
DO 444 1=1,N
READ(4,333) TT(I),XA(I)
READ(5,333) 1Tr(1),¥Y(I)
CONTINUE
DO 190 K=1,NSECT
NSECT1=NSECT-1
IF (K.LT.NSECT1)GO TO 110
NRDY =N-{K-1)*LSHFT
IF (K.EQ.NSECT) NRDX=NRDY
IF (NRDY.EQ.M) GO TO 110
NRDY1=NRDY+1
DO 100 I=NRDY1,N
X(I)=(0.,0.)
CONTINUE
DO 120 I=1,N

X(I)=DCMPLX(XA{I),XA(I))
PRINT* ,X(1I)
CONTINUE

8H

YHEAN=,

IF(MODE.EQ.0.0OR.MODE.EQ.2)G0O TO 140

CALL GETY(XA,NRDY,SS)
DO 130 I=1,NRDY
READ(5,333) T1{I),XA(I)

X(I)=DCHMPLX({REAL(Y(I)),Y(1))

CONTINUE

MODE=,I1, 20H SAMPLING FREQUENCY= ,

F15.4)
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333
140

150

160

170

180

190

200

210

22

23

91
59
24

FORMAT(F8.5,6X,F9.6)
IF{MODE.LT.2)}GO TO 160
DO 150 I=1,M
X(I)=X{I)-XMN
CONTINUE

NRDX1=NRDX+1

DO 170 I=1,H
X(I)=DCMPLX(0,,AIMAG(X(I)))
PRINT* ,X(1I)

CONTINUE

CALL FFT1(X,M,0)

print*,x(1)

DO 180 1=2,M

J=M+2-1
XI=(X{I)+CONIG(X(J)))*.5
YI=(X(J)—CONJG(X(I)))*.5

YI =DCHPLX(AIHAG(YI),REAL(YI))
Z(I)=Z(I)+CONJG(XI)*YI
print*,z({1)

CONTINUE

XI=X(1)

Z(1)=Z(1)+DCMPLX(REAL(XI)*AIMAG(XI),0.)

XI=X(MHLF1)

Z(MHLF1)=Z(NHLF1)+DCMPLX(REAL(XI)*AIMAG(XI),0.)

58=85+DBLE{LSHFT)
CONTINUE

IDFT /CORR

bo 200 1=1,M
J=l+2-1

X(I)=Z2(1)
X(J)=CONIG(Z(I))
print*,x{I},x(J)

CONTINUE

X(1)=2(1)
X(MHLF1}=Z{MILF1)
CALL FFT1(X,M,1)
FN=DBLE (N}

DO 210 I=1,MULF1
XA(I)=DBLE(X(I))/N

CONTINUE
PRINT

WRITE (3,21)
WRITE (3,22)

FORMAT (21H CORRELATION FUNCTION)

WRITE (3,21)

WRITE (3,23)

FORMAT (6X,3HLAG,12X,4HCORR)
WRITE(3,24)(TT(I),XA(I),I=1,N)
do 59 i=1,n
write(9,91)TT(1),XA(1)
format{£f7.4,5x,£0.4)
continue

FORMAT (F6.4,9X,E10.3)

WRITE (3,21)

WINDOW CORR

READ (1,26) IWIN

217

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



26

25
32

il

33

35

220

230

240

250

260

i8

39

68

92
69

FORMAT (11)
WRITE (2,25)1nIN

FORMAT (43H WINDOW TYPE { 1=RECTANGULAR, 2=HANMING)
READ (1,32)L
FORMAT (I4)
WRITE (170,31)L :
FORMAT (3511 NO OF CORRELATION VALUES USED = ,14)
READ (1,32) NFFT
WRITE (2,33} NFFT —
FORMAT (141 FPT SIZE =,14)
NHULF1=NFFT/2+1
WRITE(3,35) JWIN(IWIN,1}, JWIN{IWIN,2), JWIN{IWIN,3},
JWIN(IWIN,4), L,NFFT '
FORMAT{13H WINDOW TYPE=, 4Al,3X,22H NO OF WINDOW VALUES=
I4,3X, 11HFFT SIZE=, 1I4)
BE WARE IF X NOT EQUAL TO ¥ =————= WIN CORR FUN
PI=4.*ATAN(1.0)
DO 230 I=2,L
IF (IWIN.EQ.l) GO TO 220
XA(I)=XA(I)*(0.54+.46*COS(PI*DBLE(I-l)/DBLE(L—l)))
IF (MODE.EQ.1 .OR. MODE.EQ.3) GO TO 230
J=NFFT+2-1
XA(J)=XA(I}
CONTINUE
NLAST = NFFT +1 -I,
IF {MODE.EQ.1 .OR. MODE.EQ.3) NLAST=NFFT
Ll=L+1
DO 240 I=L1,NLAST
XA(I)=0,
CONTINUE
DO 250 I=1,NFFT
XA(I)=DCMPLX{XA(1),0.)
CONTINUE
CALL FFTl(X,NFFT,U)
LOG POWER IN DB
XFS=FS/DBLE(NFFT)
NUF=NFFT/2
NHFl=NHF+1
DO 260 I=1,NHF1
XFR(I)=DBLE(I—1)*XFS
PRINT*,X(1),ABS(X(1))
IF(X(I).EQ.0.0) GO TO 260
T=LOG10(ABS(X(1)))
XA(1)=20,%T
CONTINUE
LOG POWER (DB) PLOT
WRITE (3,21)
WRITE (3,38)
FORMAT {19H LOG POWER SPECTRUH)
WRITE (3,21)
WRITE (3,39) _
FORMAT (5x,4HFREQ,7x,ZHDB,Sx,4HFREQ,7X,2HDB,5X
AHFREQ, 7X, 2HDB, 5X, 4HFREQ, 7X, 211DB )
WRITE(3,88)
FORNMAT(//)
WRITE(3,9976)(XFR(I),XA(I),I=1,NHLF1)
do 69 i=1,NILF]
write(8,92)xfr(i),xa{i)
FORMAT(F9.4,5X,F11.4)
CONTINUE

r
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30
40

50

60
70

80

K=K/2
GO TO 20
J=J+K
CONTINUE
PI=4,0*ATAN(1,0)
DO 70 L=1,n
LEm2 k%],
LEl1=LE/2
U=(1.0,0.0) .
W=DCHMPLX{COS(PI/DBLE{LEl)),-SIN(PI/DBLE(LEL)))
IF (INV.NE.O) W=CONJG(W)
DO 60 J=1,LEl
DO §0 I=J,N,LE
IP=1+LEl
T=X{IP}*U
X{IB)=X(I)~T
XK(I)=X(I1)+T
CONTINUE
U=U*y
CONTINUE
CONTINUE
IF(INV.EQ.0)}RETURN
DO B0 I=1,N
X(I)=X(I)/DCMPLX(REAL{N),0.)
CONTINUE
RETURN
END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
THIS TRANSFORM REPRESENT THE FOURIER TRANSFORM OF THE Cc
CONVOLUTION OF A CHOSEN WAVELET g(t). AND A GIVEN SIGNAL Cc
g{t) CAN BE OBTDINED BY USING THE INVERSE FOURIER C
TRANSFORM, C
CHIOOSE YOUR WAVELET C
POLYNOMIAL SPLINES OF ORLOER 3 C
DAUBECHIES TIGHT FRAME c
Y MEYERS CONSTRUCTION C
THE MEXICAN HAT C
THE 8TH DERITIVES OF THE GAUSIAN C
ONE CYCLE OF THE SINE FUNCTION C
THE MODULATED GAUSSIAN c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

T UT S W BN

c
o
C
C
c
c
C
C
C
C
C
C
c

c

DIMENSION TT(1000), XA(-500:500,1000)

COMPLEX*16 xx(-500:500,1000),x(—500:500,1000),W(-500:500,1000)
COMPLEX*16 H(—500:500,1000),W1(~500:500,1000),W2(—500:500,1000)
COMPLEX*16 WW(-500:500,1000)

DOUBLE PRECISION A1(~500:500,1000),A2(~500:500,1000),A(~500:500,1000)
DOUBLE PRECISION A3(-500:500,1000),Ad(~5003:500,1000),AA(-500:500,1000
COMMON/A/IIP,DI,BII

OPEN{UNIT=1,FILE='WAV.DAT’, STATUS='OLD' )

OPEN(UNIT=2,FILE='GT.OUT’, STATUS="'NEW' )

OPEN(UNIT=3,FILE='GW.OUT’, STATUS='NEW' )

OPEN(UNIT=4,FILE='TSWT4.0UT’ ,STATUS='NEW' )
OPEN{UNIT=5,FILE="'SGW.OUT', STATUS='NEW"' )
OPEN(UNIT=6,FILE="SGT.OUT' , STATUS='NEW' )
OPEN{UNIT=7,FILE='TFWT.OUT' , STATUS='NEW" )

. OPEN{UNIT=8,FILE='TF,OUT’,STATUS='NEW’ )

* OPEN(UNIT=9,FILE='FR18.DAT’,STATUS="'0LD’ )
OPEN{UNIT=11,FILE='TFA.QUT’,STATUS="'NEW' ) ;
DATA DI1/2./,BI1/1./ : :
READ {1,1) I1IP

c1 FORHMAT{'CHOSE YOUR WAVELET'/'1 POLYNOMIAL SPLINES OF ORDER 3 ‘/
C $ ’2 DAUBECHIES TIGHT FRAME'/'3 Y MEYERS CONSTRUCTION'’/'4 THE
C $  MEXICAN HAT'/'5 THE 8TH DERITIVES OF THE GAUSIAN'/'ONE CYCLE
C $ OF THE SINE FUNCTION',I2)
READ (1,6)NOR,NOS,LI
READ(1,1)K00
1 FORMAT(12)
HH=1,
c 2 FORMAT( "WHAT IS THE NO. OF SAMPLES’,I4/'WHAT IS THE RESOLUTION
C $ LEVEL’,I2)
DO 3 K=1,NOS
READ(1,4) TT(XK),XA(LI,K)
q FORMAT(F8.5,6X,F9.6)
X(LI,K} = CMPLX{XA{LI,K),0.)
3 CONTINUE
CALL FFTC(X,NOS,0)
PI=4,.*ATAN(1.)
INFT=4,
6 FORMAT(I3,2X,14,1X,12,2%,F12.6)
c WRITE( *,5)K0O
C5 FORMAT{'1l TIME-SCALE REPRESENTATION
6 $ +/2 TIME-FREQUENCY REPRESENTATION',I1)
C

IF(KC0.EQ.3) CALL wr(1ip,pP1,M,N,DI,BII,NOS,NOR,H)
IF(KOO.EQ.2) GO TO 77
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11

134
8a
99

DO 99 N=2,NO0S+1

DO 88 M=—INFT,INFT 222

CALL WT(IIP,M,N,PI,DI,BII1,NOS,NOR,H)
Do 77 J=1,NOS
WL{M,J)=H(1,J)*XA(LI,J)
CONTINUE

CALL FINT(W1,NOS,M,HH}

WM, N)=(SQRT(2.%*1) ) *W1(M,NOS+1)

CALL FFTC(W,NOS,1)

AL{M,N)=REAL(W(M,N))

A2(M,N)=DIMAG(W{M,N))

A(M,NY =(AL{M , N))**2+{A2(M,N]))**2

WRITE(4,134) M,N,A(M,N)

FORMAT(13,3X,13,2X,F58.7)

CONTINUE
CONTINUE
STOP
END

SUBROUTINE WT(IIP,M,N,PI,DI,BIT,NOS,NOR,H)
COMPLEX*16 XS(1000),XX(-500:500,1000),H(-500:500,1000)
COMPLEX*16 TTT
DOUBLE PRECISION Al{-500:500,1000),A(-500:500,1000),A1(-500:500,1000)
DOUBLE PRECISION AII(-500:500,1000)
Do 2 J=2,NOS
W=REAL(J)
XS8(J)=PSI1(11P,DI,BII,H)
PRINT*,IIP,DI,W, XKl
AX(M,J})=REAL(XS(J))
AI(M,J)= DIMAG(XS(J})
WRITE(3,*)M,N,J,W,AL(M,J),ALI(M,T)
MA=DBLE( (DI**1)*W)
BB=DBLE{ FO*W/N)
XX(14,J)=PSI(I1P,DI,BII,AR)
XXX{M,J)=PSI(I1P,DI1,BII,BB)
A(M,J)=REAL{XX(M,J))
AII(M,J)= DIMAG{XX({M,J))
WRITE(5,*) M,N,J,AA,A(M,T),AIL(N1,T)
FORMAT(I2,2X,12,2X,12,2X,F21,2,4X,G21.5,G16.5)
TTT=CMPLX(0.,DI**MABITI#*N*J)
H(M,J}=EXP{TTT)*XX(M,J)
WRITE(8,88) M,J,TIT,H(M,J)
FORMAT(I3,3X,13,F25.4,4X,F28.20)
CONTINUE
RETURN
END

COMPLEX FUNCTION PSI(IIP,DI,BII,W,K1)

COMPLEX G,TT1

PI=4.*ATAN{1.)

IF(IIP.LT.1.0R.IIP.GT.7) RETURN

Go 10 (1,2,3,4,5,6,7), 11P
X1=5.430.#(COS(PI*W/2.) ) **2430. *(SIN(PI*W/2,) ) **2% (COS(PI*W/2,) ) **2
X2=2,%(COS{PI*W/2,) ) **2*(SIN{PI*W/2.))**4+70,.*(COS(PI*W/2.))**4+
2./3 . %(BIN(PI*W/2.))*%6

SIGMAB=(X1+X2)/(105.#{SIN(PI*W/2.)})
X3=5.430.*%(COS(PI*W/4.))**2+30.*(SIN(PI*W/4.) ) **2*(COS(PI*W/4,))**2
X4=2.%(COS{PI*W/4.) ) **2* (SIN(PI*W/4.) ) **4+70.*(COS(PI*W/4,) ) **4+
2./3.%(SIN(PI*W/4.))**6

SIGMAT=(X3+X4)/(105.*(SIN(PI*W/4.)))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



220

pslll
Gl o aa.:ﬂ.'d! :\7_\3\3.“ QUUSA?‘ Jalad

cﬂm&‘@@a.&mdwl

oaa il daaa gisall ¢ ol d)

s sl il ALdialy oyl e Aadlil) 30 0 3 Y1 6 alls s
A3 A it e (e 8 ) Lunasigh L) e Al Lgiuady
P ool Aghad) 3 geall oo o2 g colliall s3a (358 o gall Gl o (e Aa3ll D findl
Upusaly ) Ly ZS] 5 a5 a0 30 20 il o ualy 50 ADAS (g (S (383 e
Aadiad o3 Xl o3a Lgeal ool Lia ey o Jiadl ey 01 L Cangll 138 o1 )
22 ol ((Wavelet Transforms) Gumasal) f dx gl 5l Bl gadll Rpaa dpuilyy cullad
A0 DY G 8 e i ) cola Y 5 oaUal o dud il T Leadaaiad
CARY) <l 58 (Crosscorrelation Functions) 4abial y (Autocorrelation Functions)
J—=laill y (Crosscovariance  Functions) 4<Jaliill y (Autocovariance Functions) 45\l
4 (Wavelets) Cloag gal) (e 332 oladiud o3 VK (Power Spectral Analysis) (sl
oe Aaalll 4503l < 3l 5 (Nonstationari Signals ) A5G e A slall < LAY Jidas
Aa gall 3 jual 2O il At 4 b

Ol (e Lol 1Y P FaY) Al A Sl gall s3a oy 1) Ne
Jd e Lgdyol o e JuadY) sl (Modulated Gaussian Wavelet) 4 sl =il
JAa W ppras im o  Lde 3y (Dha IS ol sull e Bl 23 a1 2y
ohgy Ailaiall Augadl Gallasll ¢pe ase da pall 3 jeal B sadl € yelil 28 NS ¢ umly 5l
Joshdl 3Ll (Transient Boundaries) Ayl 3 paatly 3%y Lad \-‘.-,:-1:3 <l 5
Sl gl e 3UELY L g cApalitl) Ll Jlasiuls Wl dua 5l Sa o1 (Chaotic Behaviour)
A1 a3 3@ (Fast Fouier Transform) Jis (Fast Convolution Techniques) 4ay yull AL
gl 3yl DU Sasialy Al dasly ) clilal) o) pY 530 ci )

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



227

Gl Ay 2385 28 3 Ol U (0 200 i 5 88 il o3 0 ot

Adat yall ppad gall o pae Al p3 A gl B ppad cDUN Glass] 6 L

5_alhy (Turbelent Flow ) (o Yl 3aal Jha ol yudl e 43l Z0ld < 3 saYl

Sl dlb 2l asid () Sey Sy (Vortex - Shedding Phenomenon ) 4z sall (OUAY
(Ol go Aadlil AgA o 5N 340 gl () Jgea sl

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



	12269170001_Page_001
	12269170001_Page_002
	12269170001_Page_003
	12269170001_Page_004
	12269170001_Page_005
	12269170001_Page_006
	12269170001_Page_007
	12269170001_Page_008
	12269170001_Page_009
	12269170001_Page_010
	12269170001_Page_011
	12269170001_Page_012
	12269170001_Page_013
	12269170001_Page_014
	12269170001_Page_015
	12269170001_Page_016
	12269170001_Page_017
	12269170001_Page_018
	12269170001_Page_019
	12269170001_Page_020
	12269170001_Page_021
	12269170001_Page_022
	12269170001_Page_023
	12269170001_Page_024
	12269170001_Page_025
	12269170001_Page_026
	12269170001_Page_027
	12269170001_Page_028
	12269170001_Page_029
	12269170001_Page_030
	12269170001_Page_031
	12269170001_Page_032
	12269170001_Page_033
	12269170001_Page_034
	12269170001_Page_035
	12269170001_Page_036
	12269170001_Page_037
	12269170001_Page_038
	12269170001_Page_039
	12269170001_Page_040
	12269170001_Page_041
	12269170001_Page_042
	12269170001_Page_043
	12269170001_Page_044
	12269170001_Page_045
	12269170001_Page_046
	12269170001_Page_047
	12269170001_Page_048
	12269170001_Page_049
	12269170001_Page_050
	12269170001_Page_051
	12269170001_Page_052
	12269170001_Page_053
	12269170001_Page_054
	12269170001_Page_055
	12269170001_Page_056
	12269170001_Page_057
	12269170001_Page_058
	12269170001_Page_059
	12269170001_Page_060
	12269170001_Page_061
	12269170001_Page_062
	12269170001_Page_063
	12269170001_Page_064
	12269170001_Page_065
	12269170001_Page_066
	12269170001_Page_067
	12269170001_Page_068
	12269170001_Page_069
	12269170001_Page_070
	12269170001_Page_071
	12269170001_Page_072
	12269170001_Page_073
	12269170001_Page_074
	12269170001_Page_075
	12269170001_Page_076
	12269170001_Page_077
	12269170001_Page_078
	12269170001_Page_079
	12269170001_Page_080
	12269170001_Page_081
	12269170001_Page_082
	12269170001_Page_083
	12269170001_Page_084
	12269170001_Page_085
	12269170001_Page_086
	12269170001_Page_087
	12269170001_Page_088
	12269170001_Page_089
	12269170001_Page_090
	12269170001_Page_091
	12269170001_Page_092
	12269170001_Page_093
	12269170001_Page_094
	12269170001_Page_095
	12269170001_Page_096
	12269170001_Page_097
	12269170001_Page_098
	12269170001_Page_099
	12269170001_Page_100
	12269170001_Page_101
	12269170001_Page_102
	12269170001_Page_103
	12269170001_Page_104
	12269170001_Page_105
	12269170001_Page_106
	12269170001_Page_107
	12269170001_Page_108
	12269170001_Page_109
	12269170001_Page_110
	12269170001_Page_111
	12269170001_Page_112
	12269170001_Page_113
	12269170001_Page_114
	12269170001_Page_115
	12269170001_Page_116
	12269170001_Page_117
	12269170001_Page_118
	12269170001_Page_119
	12269170001_Page_120
	12269170001_Page_121
	12269170001_Page_122
	12269170001_Page_123
	12269170001_Page_124
	12269170001_Page_125
	12269170001_Page_126
	12269170001_Page_127
	12269170001_Page_128
	12269170001_Page_129
	12269170001_Page_130
	12269170001_Page_131
	12269170001_Page_132
	12269170001_Page_133
	12269170001_Page_134
	12269170001_Page_135
	12269170001_Page_136
	12269170001_Page_137
	12269170001_Page_138
	12269170001_Page_139
	12269170001_Page_140
	12269170001_Page_141
	12269170001_Page_142
	12269170001_Page_143
	12269170001_Page_144
	12269170001_Page_145
	12269170001_Page_146
	12269170001_Page_147
	12269170001_Page_148
	12269170001_Page_149
	12269170001_Page_150
	12269170001_Page_151
	12269170001_Page_152
	12269170001_Page_153
	12269170001_Page_154
	12269170001_Page_155
	12269170001_Page_156
	12269170001_Page_157
	12269170001_Page_158
	12269170001_Page_159
	12269170001_Page_160
	12269170001_Page_161
	12269170001_Page_162
	12269170001_Page_163
	12269170001_Page_164
	12269170001_Page_165
	12269170001_Page_166
	12269170001_Page_167
	12269170001_Page_168
	12269170001_Page_169
	12269170001_Page_170
	12269170001_Page_171
	12269170001_Page_172
	12269170001_Page_173
	12269170001_Page_174
	12269170001_Page_175
	12269170001_Page_176
	12269170001_Page_177
	12269170001_Page_178
	12269170001_Page_179
	12269170001_Page_180
	12269170001_Page_181
	12269170001_Page_182
	12269170001_Page_183
	12269170001_Page_184
	12269170001_Page_185
	12269170001_Page_186
	12269170001_Page_187
	12269170001_Page_188
	12269170001_Page_189
	12269170001_Page_190
	12269170001_Page_191
	12269170001_Page_192
	12269170001_Page_193
	12269170001_Page_194
	12269170001_Page_195
	12269170001_Page_196
	12269170001_Page_197
	12269170001_Page_198
	12269170001_Page_199
	12269170001_Page_200
	12269170001_Page_201
	12269170001_Page_202
	12269170001_Page_203
	12269170001_Page_204
	12269170001_Page_205
	12269170001_Page_206
	12269170001_Page_207
	12269170001_Page_208
	12269170001_Page_209
	12269170001_Page_210

